Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.4 * weight + 53
This means that on average for every extra kilogram weight a rider loses -0.4 positions in the result.
Steensen
1
65 kgJõeäär
2
84 kgTybor
6
72 kgKönig
9
62 kgKangert
10
65 kgKvist
16
68 kgPaďour
18
59 kgTaaramäe
19
73 kgReimer
21
69 kgBoasson Hagen
23
75 kgCharucki
24
64 kgForke
25
78 kgKittel
26
82 kgStauff
28
82 kgČanecký
29
72 kgKrizek
31
74 kgKump
37
68 kgGretsch
60
69 kgPfingsten
79
69 kgSagan
85
65 kg
1
65 kgJõeäär
2
84 kgTybor
6
72 kgKönig
9
62 kgKangert
10
65 kgKvist
16
68 kgPaďour
18
59 kgTaaramäe
19
73 kgReimer
21
69 kgBoasson Hagen
23
75 kgCharucki
24
64 kgForke
25
78 kgKittel
26
82 kgStauff
28
82 kgČanecký
29
72 kgKrizek
31
74 kgKump
37
68 kgGretsch
60
69 kgPfingsten
79
69 kgSagan
85
65 kg
Weight (KG) →
Result →
84
59
1
85
# | Rider | Weight (KG) |
---|---|---|
1 | STEENSEN André | 65 |
2 | JÕEÄÄR Gert | 84 |
6 | TYBOR Patrik | 72 |
9 | KÖNIG Leopold | 62 |
10 | KANGERT Tanel | 65 |
16 | KVIST Thomas Vedel | 68 |
18 | PAĎOUR František | 59 |
19 | TAARAMÄE Rein | 73 |
21 | REIMER Martin | 69 |
23 | BOASSON HAGEN Edvald | 75 |
24 | CHARUCKI Paweł | 64 |
25 | FORKE Sebastian | 78 |
26 | KITTEL Marcel | 82 |
28 | STAUFF Andreas | 82 |
29 | ČANECKÝ Marek | 72 |
31 | KRIZEK Matthias | 74 |
37 | KUMP Marko | 68 |
60 | GRETSCH Patrick | 69 |
79 | PFINGSTEN Christoph | 69 |
85 | SAGAN Juraj | 65 |