Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.2 * weight + 29
This means that on average for every extra kilogram weight a rider loses 0.2 positions in the result.
Kwiatkowski
1
68 kgVermote
2
74 kgBrändle
3
80 kgSagan
4
78 kgVermote
5
74 kgGuldhammer
8
66 kgJuul-Jensen
14
73 kgDillier
15
75 kgOwsian
18
66 kgPolnický
30
68 kgMajka
31
62 kgPetruš
34
58 kgJones
35
64 kgSelig
37
80 kgEijssen
47
60 kgWallays
48
77 kgPoljański
74
63 kgSalomein
81
80 kgNovák
106
71 kgSteels
107
78 kgImhof
116
80 kgMahďar
125
61 kgRosskopf
126
74 kg
1
68 kgVermote
2
74 kgBrändle
3
80 kgSagan
4
78 kgVermote
5
74 kgGuldhammer
8
66 kgJuul-Jensen
14
73 kgDillier
15
75 kgOwsian
18
66 kgPolnický
30
68 kgMajka
31
62 kgPetruš
34
58 kgJones
35
64 kgSelig
37
80 kgEijssen
47
60 kgWallays
48
77 kgPoljański
74
63 kgSalomein
81
80 kgNovák
106
71 kgSteels
107
78 kgImhof
116
80 kgMahďar
125
61 kgRosskopf
126
74 kg
Weight (KG) →
Result →
80
58
1
126
# | Rider | Weight (KG) |
---|---|---|
1 | KWIATKOWSKI Michał | 68 |
2 | VERMOTE Julien | 74 |
3 | BRÄNDLE Matthias | 80 |
4 | SAGAN Peter | 78 |
5 | VERMOTE Alphonse | 74 |
8 | GULDHAMMER Rasmus | 66 |
14 | JUUL-JENSEN Christopher | 73 |
15 | DILLIER Silvan | 75 |
18 | OWSIAN Łukasz | 66 |
30 | POLNICKÝ Jiří | 68 |
31 | MAJKA Rafał | 62 |
34 | PETRUŠ Lubomir | 58 |
35 | JONES Carter | 64 |
37 | SELIG Rüdiger | 80 |
47 | EIJSSEN Yannick | 60 |
48 | WALLAYS Jelle | 77 |
74 | POLJAŃSKI Paweł | 63 |
81 | SALOMEIN Jarl | 80 |
106 | NOVÁK Jakub | 71 |
107 | STEELS Stijn | 78 |
116 | IMHOF Claudio | 80 |
125 | MAHĎAR Martin | 61 |
126 | ROSSKOPF Joey | 74 |