Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.1 * weight + 34
This means that on average for every extra kilogram weight a rider loses 0.1 positions in the result.
Guldhammer
2
66 kgKwiatkowski
4
68 kgSagan
5
78 kgSalomein
7
80 kgEijssen
9
60 kgDillier
11
75 kgVermote
13
74 kgPolnický
25
68 kgVermote
26
74 kgJuul-Jensen
29
73 kgWallays
30
77 kgBrändle
32
80 kgMajka
34
62 kgSteels
41
78 kgOwsian
42
66 kgPoljański
43
63 kgPetruš
57
58 kgJones
69
64 kgMahďar
70
61 kgNovák
84
71 kgSelig
85
80 kgImhof
89
80 kgRosskopf
103
74 kg
2
66 kgKwiatkowski
4
68 kgSagan
5
78 kgSalomein
7
80 kgEijssen
9
60 kgDillier
11
75 kgVermote
13
74 kgPolnický
25
68 kgVermote
26
74 kgJuul-Jensen
29
73 kgWallays
30
77 kgBrändle
32
80 kgMajka
34
62 kgSteels
41
78 kgOwsian
42
66 kgPoljański
43
63 kgPetruš
57
58 kgJones
69
64 kgMahďar
70
61 kgNovák
84
71 kgSelig
85
80 kgImhof
89
80 kgRosskopf
103
74 kg
Weight (KG) →
Result →
80
58
2
103
# | Rider | Weight (KG) |
---|---|---|
2 | GULDHAMMER Rasmus | 66 |
4 | KWIATKOWSKI Michał | 68 |
5 | SAGAN Peter | 78 |
7 | SALOMEIN Jarl | 80 |
9 | EIJSSEN Yannick | 60 |
11 | DILLIER Silvan | 75 |
13 | VERMOTE Julien | 74 |
25 | POLNICKÝ Jiří | 68 |
26 | VERMOTE Alphonse | 74 |
29 | JUUL-JENSEN Christopher | 73 |
30 | WALLAYS Jelle | 77 |
32 | BRÄNDLE Matthias | 80 |
34 | MAJKA Rafał | 62 |
41 | STEELS Stijn | 78 |
42 | OWSIAN Łukasz | 66 |
43 | POLJAŃSKI Paweł | 63 |
57 | PETRUŠ Lubomir | 58 |
69 | JONES Carter | 64 |
70 | MAHĎAR Martin | 61 |
84 | NOVÁK Jakub | 71 |
85 | SELIG Rüdiger | 80 |
89 | IMHOF Claudio | 80 |
103 | ROSSKOPF Joey | 74 |