Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -1 * weight + 109
This means that on average for every extra kilogram weight a rider loses -1 positions in the result.
Vermote
2
74 kgImhof
4
80 kgJones
8
64 kgWallays
10
77 kgKwiatkowski
12
68 kgSalomein
15
80 kgSteels
17
78 kgPoljański
19
63 kgGuldhammer
22
66 kgJuul-Jensen
28
73 kgNovák
29
71 kgBrändle
32
80 kgSelig
33
80 kgMajka
37
62 kgOwsian
41
66 kgPetruš
45
58 kgDillier
46
75 kgVermote
48
74 kgEijssen
52
60 kgRosskopf
53
74 kgSagan
79
78 kgPolnický
92
68 kgMahďar
102
61 kg
2
74 kgImhof
4
80 kgJones
8
64 kgWallays
10
77 kgKwiatkowski
12
68 kgSalomein
15
80 kgSteels
17
78 kgPoljański
19
63 kgGuldhammer
22
66 kgJuul-Jensen
28
73 kgNovák
29
71 kgBrändle
32
80 kgSelig
33
80 kgMajka
37
62 kgOwsian
41
66 kgPetruš
45
58 kgDillier
46
75 kgVermote
48
74 kgEijssen
52
60 kgRosskopf
53
74 kgSagan
79
78 kgPolnický
92
68 kgMahďar
102
61 kg
Weight (KG) →
Result →
80
58
2
102
# | Rider | Weight (KG) |
---|---|---|
2 | VERMOTE Julien | 74 |
4 | IMHOF Claudio | 80 |
8 | JONES Carter | 64 |
10 | WALLAYS Jelle | 77 |
12 | KWIATKOWSKI Michał | 68 |
15 | SALOMEIN Jarl | 80 |
17 | STEELS Stijn | 78 |
19 | POLJAŃSKI Paweł | 63 |
22 | GULDHAMMER Rasmus | 66 |
28 | JUUL-JENSEN Christopher | 73 |
29 | NOVÁK Jakub | 71 |
32 | BRÄNDLE Matthias | 80 |
33 | SELIG Rüdiger | 80 |
37 | MAJKA Rafał | 62 |
41 | OWSIAN Łukasz | 66 |
45 | PETRUŠ Lubomir | 58 |
46 | DILLIER Silvan | 75 |
48 | VERMOTE Alphonse | 74 |
52 | EIJSSEN Yannick | 60 |
53 | ROSSKOPF Joey | 74 |
79 | SAGAN Peter | 78 |
92 | POLNICKÝ Jiří | 68 |
102 | MAHĎAR Martin | 61 |