Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.9 * weight - 32
This means that on average for every extra kilogram weight a rider loses 0.9 positions in the result.
Majka
1
62 kgSagan
2
78 kgVermote
3
74 kgGuldhammer
4
66 kgKwiatkowski
5
68 kgSalomein
7
80 kgDillier
8
75 kgEijssen
12
60 kgBrändle
15
80 kgOwsian
19
66 kgPolnický
24
68 kgPetruš
26
58 kgPoljański
30
63 kgJuul-Jensen
31
73 kgJones
37
64 kgMahďar
39
61 kgWallays
49
77 kgSteels
75
78 kgImhof
76
80 kgVermote
80
74 kgNovák
85
71 kg
1
62 kgSagan
2
78 kgVermote
3
74 kgGuldhammer
4
66 kgKwiatkowski
5
68 kgSalomein
7
80 kgDillier
8
75 kgEijssen
12
60 kgBrändle
15
80 kgOwsian
19
66 kgPolnický
24
68 kgPetruš
26
58 kgPoljański
30
63 kgJuul-Jensen
31
73 kgJones
37
64 kgMahďar
39
61 kgWallays
49
77 kgSteels
75
78 kgImhof
76
80 kgVermote
80
74 kgNovák
85
71 kg
Weight (KG) →
Result →
80
58
1
85
# | Rider | Weight (KG) |
---|---|---|
1 | MAJKA Rafał | 62 |
2 | SAGAN Peter | 78 |
3 | VERMOTE Julien | 74 |
4 | GULDHAMMER Rasmus | 66 |
5 | KWIATKOWSKI Michał | 68 |
7 | SALOMEIN Jarl | 80 |
8 | DILLIER Silvan | 75 |
12 | EIJSSEN Yannick | 60 |
15 | BRÄNDLE Matthias | 80 |
19 | OWSIAN Łukasz | 66 |
24 | POLNICKÝ Jiří | 68 |
26 | PETRUŠ Lubomir | 58 |
30 | POLJAŃSKI Paweł | 63 |
31 | JUUL-JENSEN Christopher | 73 |
37 | JONES Carter | 64 |
39 | MAHĎAR Martin | 61 |
49 | WALLAYS Jelle | 77 |
75 | STEELS Stijn | 78 |
76 | IMHOF Claudio | 80 |
80 | VERMOTE Alphonse | 74 |
85 | NOVÁK Jakub | 71 |