Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0 * weight + 19
This means that on average for every extra kilogram weight a rider loses -0 positions in the result.
Pedersen
1
70 kgvan der Poel
2
75 kgBurton
4
55 kgLawless
5
72 kgVan Hooydonck
6
78 kgGesbert
7
63 kgGeoghegan Hart
9
65 kgBiermans
10
78 kgAllegaert
12
70 kgOwen
13
67 kgLizde
14
70 kgPaluta
17
65 kgBudyak
18
53 kgPer
20
81 kgViel
24
72 kgStrakhov
25
70 kgVan Gompel
30
70 kgTenbrock
32
74 kgBonnamour
33
70 kgSchulze
34
64 kgWachter
35
72 kgOomen
36
65 kgKrul
37
68 kg
1
70 kgvan der Poel
2
75 kgBurton
4
55 kgLawless
5
72 kgVan Hooydonck
6
78 kgGesbert
7
63 kgGeoghegan Hart
9
65 kgBiermans
10
78 kgAllegaert
12
70 kgOwen
13
67 kgLizde
14
70 kgPaluta
17
65 kgBudyak
18
53 kgPer
20
81 kgViel
24
72 kgStrakhov
25
70 kgVan Gompel
30
70 kgTenbrock
32
74 kgBonnamour
33
70 kgSchulze
34
64 kgWachter
35
72 kgOomen
36
65 kgKrul
37
68 kg
Weight (KG) →
Result →
81
53
1
37
# | Rider | Weight (KG) |
---|---|---|
1 | PEDERSEN Mads | 70 |
2 | VAN DER POEL Mathieu | 75 |
4 | BURTON Germain | 55 |
5 | LAWLESS Chris | 72 |
6 | VAN HOOYDONCK Nathan | 78 |
7 | GESBERT Élie | 63 |
9 | GEOGHEGAN HART Tao | 65 |
10 | BIERMANS Jenthe | 78 |
12 | ALLEGAERT Piet | 70 |
13 | OWEN Logan | 67 |
14 | LIZDE Seid | 70 |
17 | PALUTA Michał | 65 |
18 | BUDYAK Anatoliy | 53 |
20 | PER David | 81 |
24 | VIEL Mattia | 72 |
25 | STRAKHOV Dmitry | 70 |
30 | VAN GOMPEL Mathias | 70 |
32 | TENBROCK Jonas | 74 |
33 | BONNAMOUR Franck | 70 |
34 | SCHULZE Julian | 64 |
35 | WACHTER Alexander | 72 |
36 | OOMEN Sam | 65 |
37 | KRUL Stef | 68 |