Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0 * weight + 16
This means that on average for every extra kilogram weight a rider loses 0 positions in the result.
Pedersen
1
76 kgvan der Poel
2
75 kgBurton
3
55 kgVan Hooydonck
4
78 kgGesbert
5
63 kgGeoghegan Hart
8
65 kgLawless
9
72 kgOwen
11
67 kgBudyak
12
53 kgPaluta
13
65 kgBiermans
15
78 kgPer
16
81 kgAllegaert
18
70 kgStrakhov
22
70 kgLizde
26
70 kgViel
27
72 kgVan Gompel
28
70 kgBonnamour
30
70 kgSchulze
31
64 kgOomen
32
65 kgKrul
33
68 kgWachter
35
72 kg
1
76 kgvan der Poel
2
75 kgBurton
3
55 kgVan Hooydonck
4
78 kgGesbert
5
63 kgGeoghegan Hart
8
65 kgLawless
9
72 kgOwen
11
67 kgBudyak
12
53 kgPaluta
13
65 kgBiermans
15
78 kgPer
16
81 kgAllegaert
18
70 kgStrakhov
22
70 kgLizde
26
70 kgViel
27
72 kgVan Gompel
28
70 kgBonnamour
30
70 kgSchulze
31
64 kgOomen
32
65 kgKrul
33
68 kgWachter
35
72 kg
Weight (KG) →
Result →
81
53
1
35
# | Rider | Weight (KG) |
---|---|---|
1 | PEDERSEN Mads | 76 |
2 | VAN DER POEL Mathieu | 75 |
3 | BURTON Germain | 55 |
4 | VAN HOOYDONCK Nathan | 78 |
5 | GESBERT Élie | 63 |
8 | GEOGHEGAN HART Tao | 65 |
9 | LAWLESS Chris | 72 |
11 | OWEN Logan | 67 |
12 | BUDYAK Anatoliy | 53 |
13 | PALUTA Michał | 65 |
15 | BIERMANS Jenthe | 78 |
16 | PER David | 81 |
18 | ALLEGAERT Piet | 70 |
22 | STRAKHOV Dmitry | 70 |
26 | LIZDE Seid | 70 |
27 | VIEL Mattia | 72 |
28 | VAN GOMPEL Mathias | 70 |
30 | BONNAMOUR Franck | 70 |
31 | SCHULZE Julian | 64 |
32 | OOMEN Sam | 65 |
33 | KRUL Stef | 68 |
35 | WACHTER Alexander | 72 |