Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.8 * weight + 73
This means that on average for every extra kilogram weight a rider loses -0.8 positions in the result.
Blikra
1
75 kgGibson
2
76 kgErmenault
3
75 kgKoch
8
68 kgCornelisse
10
73.5 kgGidich
11
69 kgBarta
12
61 kgBouhanni
13
70 kgRostovtsev
14
73 kgEinhorn
15
72 kgKämna
17
65 kgŤoupalík
18
65 kgParet-Peintre
19
64 kgMaas
23
70 kgEenkhoorn
24
72 kgFedeli
25
65 kgFoss
28
74 kgPadun
29
67 kgPer
30
68 kg
1
75 kgGibson
2
76 kgErmenault
3
75 kgKoch
8
68 kgCornelisse
10
73.5 kgGidich
11
69 kgBarta
12
61 kgBouhanni
13
70 kgRostovtsev
14
73 kgEinhorn
15
72 kgKämna
17
65 kgŤoupalík
18
65 kgParet-Peintre
19
64 kgMaas
23
70 kgEenkhoorn
24
72 kgFedeli
25
65 kgFoss
28
74 kgPadun
29
67 kgPer
30
68 kg
Weight (KG) →
Result →
76
61
1
30
# | Rider | Weight (KG) |
---|---|---|
1 | BLIKRA Erlend | 75 |
2 | GIBSON Matthew | 76 |
3 | ERMENAULT Corentin | 75 |
8 | KOCH Christian | 68 |
10 | CORNELISSE Mitchell | 73.5 |
11 | GIDICH Yevgeniy | 69 |
12 | BARTA Will | 61 |
13 | BOUHANNI Rayane | 70 |
14 | ROSTOVTSEV Sergey | 73 |
15 | EINHORN Itamar | 72 |
17 | KÄMNA Lennard | 65 |
18 | ŤOUPALÍK Adam | 65 |
19 | PARET-PEINTRE Aurélien | 64 |
23 | MAAS Jan | 70 |
24 | EENKHOORN Pascal | 72 |
25 | FEDELI Alessandro | 65 |
28 | FOSS Tobias | 74 |
29 | PADUN Mark | 67 |
30 | PER Gorazd | 68 |