Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0 * weight + 21
This means that on average for every extra kilogram weight a rider loses -0 positions in the result.
McNulty
1
69 kgSajnok
2
75 kgRostovtsev
3
73 kgCosta
4
61 kgPedersen
6
84 kgPronskiy
7
58 kgHaller
8
68 kgLarsen
12
74 kgWelten
14
81 kgRajović
16
74 kgFoss
17
74 kgStokbro
20
70 kgPer
23
68 kgGall
24
66 kgPogačar
27
66 kgBeullens
28
79 kgGuglielmi
30
66 kgGhys
32
72 kgInkelaar
33
64 kgvan den Berg
35
72 kgOtruba
36
75 kgHecht
38
72 kg
1
69 kgSajnok
2
75 kgRostovtsev
3
73 kgCosta
4
61 kgPedersen
6
84 kgPronskiy
7
58 kgHaller
8
68 kgLarsen
12
74 kgWelten
14
81 kgRajović
16
74 kgFoss
17
74 kgStokbro
20
70 kgPer
23
68 kgGall
24
66 kgPogačar
27
66 kgBeullens
28
79 kgGuglielmi
30
66 kgGhys
32
72 kgInkelaar
33
64 kgvan den Berg
35
72 kgOtruba
36
75 kgHecht
38
72 kg
Weight (KG) →
Result →
84
58
1
38
# | Rider | Weight (KG) |
---|---|---|
1 | MCNULTY Brandon | 69 |
2 | SAJNOK Szymon | 75 |
3 | ROSTOVTSEV Sergey | 73 |
4 | COSTA Adrien | 61 |
6 | PEDERSEN Rasmus Lund | 84 |
7 | PRONSKIY Vadim | 58 |
8 | HALLER Patrick | 68 |
12 | LARSEN Niklas | 74 |
14 | WELTEN Bram | 81 |
16 | RAJOVIĆ Dušan | 74 |
17 | FOSS Tobias | 74 |
20 | STOKBRO Andreas | 70 |
23 | PER Gorazd | 68 |
24 | GALL Felix | 66 |
27 | POGAČAR Tadej | 66 |
28 | BEULLENS Cedric | 79 |
30 | GUGLIELMI Simon | 66 |
32 | GHYS Robbe | 72 |
33 | INKELAAR Kevin | 64 |
35 | VAN DEN BERG Lars | 72 |
36 | OTRUBA Jakub | 75 |
38 | HECHT Gage | 72 |