Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.1 * weight + 13
This means that on average for every extra kilogram weight a rider loses 0.1 positions in the result.
McNulty
1
69 kgCosta
2
61 kgSajnok
4
75 kgRostovtsev
6
73 kgLarsen
9
74 kgWelten
10
81 kgFoss
12
74 kgHaller
13
68 kgStokbro
15
70 kgRajović
18
74 kgPer
20
68 kgGall
21
66 kgPronskiy
22
58 kgPogačar
23
66 kgBeullens
24
79 kgPedersen
25
84 kgGhys
29
72 kgInkelaar
30
64 kgvan den Berg
31
72 kgOtruba
32
75 kgHecht
35
72 kg
1
69 kgCosta
2
61 kgSajnok
4
75 kgRostovtsev
6
73 kgLarsen
9
74 kgWelten
10
81 kgFoss
12
74 kgHaller
13
68 kgStokbro
15
70 kgRajović
18
74 kgPer
20
68 kgGall
21
66 kgPronskiy
22
58 kgPogačar
23
66 kgBeullens
24
79 kgPedersen
25
84 kgGhys
29
72 kgInkelaar
30
64 kgvan den Berg
31
72 kgOtruba
32
75 kgHecht
35
72 kg
Weight (KG) →
Result →
84
58
1
35
# | Rider | Weight (KG) |
---|---|---|
1 | MCNULTY Brandon | 69 |
2 | COSTA Adrien | 61 |
4 | SAJNOK Szymon | 75 |
6 | ROSTOVTSEV Sergey | 73 |
9 | LARSEN Niklas | 74 |
10 | WELTEN Bram | 81 |
12 | FOSS Tobias | 74 |
13 | HALLER Patrick | 68 |
15 | STOKBRO Andreas | 70 |
18 | RAJOVIĆ Dušan | 74 |
20 | PER Gorazd | 68 |
21 | GALL Felix | 66 |
22 | PRONSKIY Vadim | 58 |
23 | POGAČAR Tadej | 66 |
24 | BEULLENS Cedric | 79 |
25 | PEDERSEN Rasmus Lund | 84 |
29 | GHYS Robbe | 72 |
30 | INKELAAR Kevin | 64 |
31 | VAN DEN BERG Lars | 72 |
32 | OTRUBA Jakub | 75 |
35 | HECHT Gage | 72 |