Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.7 * weight - 33
This means that on average for every extra kilogram weight a rider loses 0.7 positions in the result.
Evenepoel
1
61 kgMayrhofer
2
70 kgHindsgaul
3
67 kgSkjelmose
4
65 kgQuinn
6
67 kgMarcellusi
7
62 kgVacek
8
60 kgTiberi
9
62 kgVan Wilder
10
64 kgWandahl
12
61 kgBrussenskiy
13
64 kgVervloesem
14
65 kgFancellu
15
62 kgCharrin
16
67 kgWacker
17
68 kgGeßner
19
72 kgSyritsa
21
85 kgHeiduk
22
70 kgPluimers
24
67 kgPapierski
28
81 kgParashchak
29
66 kg
1
61 kgMayrhofer
2
70 kgHindsgaul
3
67 kgSkjelmose
4
65 kgQuinn
6
67 kgMarcellusi
7
62 kgVacek
8
60 kgTiberi
9
62 kgVan Wilder
10
64 kgWandahl
12
61 kgBrussenskiy
13
64 kgVervloesem
14
65 kgFancellu
15
62 kgCharrin
16
67 kgWacker
17
68 kgGeßner
19
72 kgSyritsa
21
85 kgHeiduk
22
70 kgPluimers
24
67 kgPapierski
28
81 kgParashchak
29
66 kg
Weight (KG) →
Result →
85
60
1
29
# | Rider | Weight (KG) |
---|---|---|
1 | EVENEPOEL Remco | 61 |
2 | MAYRHOFER Marius | 70 |
3 | HINDSGAUL Jacob | 67 |
4 | SKJELMOSE Mattias | 65 |
6 | QUINN Sean | 67 |
7 | MARCELLUSI Martin | 62 |
8 | VACEK Karel | 60 |
9 | TIBERI Antonio | 62 |
10 | VAN WILDER Ilan | 64 |
12 | WANDAHL Frederik | 61 |
13 | BRUSSENSKIY Gleb | 64 |
14 | VERVLOESEM Xandres | 65 |
15 | FANCELLU Alessandro | 62 |
16 | CHARRIN Aloïs | 67 |
17 | WACKER Ludvig Anton | 68 |
19 | GEßNER Jakob | 72 |
21 | SYRITSA Gleb | 85 |
22 | HEIDUK Kim | 70 |
24 | PLUIMERS Rick | 67 |
28 | PAPIERSKI Damian | 81 |
29 | PARASHCHAK Yaroslav | 66 |