Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.1 * weight + 5
This means that on average for every extra kilogram weight a rider loses 0.1 positions in the result.
Mayrhofer
1
70 kgHindsgaul
2
67 kgMarcellusi
3
62 kgSkjelmose
4
65 kgEvenepoel
6
61 kgQuinn
7
67 kgCharrin
8
67 kgWacker
9
68 kgBrussenskiy
10
64 kgSyritsa
11
85 kgPattyn
12
63 kgSteininger
13
64 kgTiberi
15
62 kgGeßner
16
72 kgVan Wilder
17
64 kgHeiduk
18
70 kgWandahl
19
61 kgVacek
21
60 kgPluimers
22
67 kgPapierski
23
81 kgParashchak
26
66 kgGratzer
27
67 kg
1
70 kgHindsgaul
2
67 kgMarcellusi
3
62 kgSkjelmose
4
65 kgEvenepoel
6
61 kgQuinn
7
67 kgCharrin
8
67 kgWacker
9
68 kgBrussenskiy
10
64 kgSyritsa
11
85 kgPattyn
12
63 kgSteininger
13
64 kgTiberi
15
62 kgGeßner
16
72 kgVan Wilder
17
64 kgHeiduk
18
70 kgWandahl
19
61 kgVacek
21
60 kgPluimers
22
67 kgPapierski
23
81 kgParashchak
26
66 kgGratzer
27
67 kg
Weight (KG) →
Result →
85
60
1
27
# | Rider | Weight (KG) |
---|---|---|
1 | MAYRHOFER Marius | 70 |
2 | HINDSGAUL Jacob | 67 |
3 | MARCELLUSI Martin | 62 |
4 | SKJELMOSE Mattias | 65 |
6 | EVENEPOEL Remco | 61 |
7 | QUINN Sean | 67 |
8 | CHARRIN Aloïs | 67 |
9 | WACKER Ludvig Anton | 68 |
10 | BRUSSENSKIY Gleb | 64 |
11 | SYRITSA Gleb | 85 |
12 | PATTYN Steven | 63 |
13 | STEININGER Fabian | 64 |
15 | TIBERI Antonio | 62 |
16 | GEßNER Jakob | 72 |
17 | VAN WILDER Ilan | 64 |
18 | HEIDUK Kim | 70 |
19 | WANDAHL Frederik | 61 |
21 | VACEK Karel | 60 |
22 | PLUIMERS Rick | 67 |
23 | PAPIERSKI Damian | 81 |
26 | PARASHCHAK Yaroslav | 66 |
27 | GRATZER Alexander | 67 |