Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.5 * weight - 17
This means that on average for every extra kilogram weight a rider loses 0.5 positions in the result.
Mayrhofer
1
70 kgHindsgaul
2
67 kgEvenepoel
3
61 kgSkjelmose
5
65 kgMarcellusi
6
62 kgVacek
7
60 kgTiberi
8
62 kgQuinn
9
67 kgVan Wilder
11
64 kgCharrin
12
67 kgWacker
13
68 kgBrussenskiy
14
64 kgGeßner
15
72 kgSyritsa
17
85 kgSteininger
18
64 kgVervloesem
19
65 kgHeiduk
20
70 kgWandahl
21
61 kgPluimers
23
67 kgPapierski
27
81 kgParashchak
28
66 kgGratzer
29
67 kg
1
70 kgHindsgaul
2
67 kgEvenepoel
3
61 kgSkjelmose
5
65 kgMarcellusi
6
62 kgVacek
7
60 kgTiberi
8
62 kgQuinn
9
67 kgVan Wilder
11
64 kgCharrin
12
67 kgWacker
13
68 kgBrussenskiy
14
64 kgGeßner
15
72 kgSyritsa
17
85 kgSteininger
18
64 kgVervloesem
19
65 kgHeiduk
20
70 kgWandahl
21
61 kgPluimers
23
67 kgPapierski
27
81 kgParashchak
28
66 kgGratzer
29
67 kg
Weight (KG) →
Result →
85
60
1
29
# | Rider | Weight (KG) |
---|---|---|
1 | MAYRHOFER Marius | 70 |
2 | HINDSGAUL Jacob | 67 |
3 | EVENEPOEL Remco | 61 |
5 | SKJELMOSE Mattias | 65 |
6 | MARCELLUSI Martin | 62 |
7 | VACEK Karel | 60 |
8 | TIBERI Antonio | 62 |
9 | QUINN Sean | 67 |
11 | VAN WILDER Ilan | 64 |
12 | CHARRIN Aloïs | 67 |
13 | WACKER Ludvig Anton | 68 |
14 | BRUSSENSKIY Gleb | 64 |
15 | GEßNER Jakob | 72 |
17 | SYRITSA Gleb | 85 |
18 | STEININGER Fabian | 64 |
19 | VERVLOESEM Xandres | 65 |
20 | HEIDUK Kim | 70 |
21 | WANDAHL Frederik | 61 |
23 | PLUIMERS Rick | 67 |
27 | PAPIERSKI Damian | 81 |
28 | PARASHCHAK Yaroslav | 66 |
29 | GRATZER Alexander | 67 |