Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.4 * weight + 45
This means that on average for every extra kilogram weight a rider loses -0.4 positions in the result.
Penhoët
2
64 kgTiberi
3
62 kgToumire
4
69 kgBallerstedt
5
76 kgHessmann
6
78 kgWillems
7
64 kgPiccolo
8
64 kgPonomar
16
65 kgVandenbulcke
17
61 kgRosner
18
68 kgBrenner
19
59 kgLindner
20
71 kgBaudin
21
66 kgAndresen
23
69 kgŤoupalík
26
65 kgBittner
27
73 kgVan Eetvelt
28
63 kgParet-Peintre
29
52 kgWilksch
33
62 kgStaune-Mittet
34
67 kgVančo
35
69 kg
2
64 kgTiberi
3
62 kgToumire
4
69 kgBallerstedt
5
76 kgHessmann
6
78 kgWillems
7
64 kgPiccolo
8
64 kgPonomar
16
65 kgVandenbulcke
17
61 kgRosner
18
68 kgBrenner
19
59 kgLindner
20
71 kgBaudin
21
66 kgAndresen
23
69 kgŤoupalík
26
65 kgBittner
27
73 kgVan Eetvelt
28
63 kgParet-Peintre
29
52 kgWilksch
33
62 kgStaune-Mittet
34
67 kgVančo
35
69 kg
Weight (KG) →
Result →
78
52
2
35
# | Rider | Weight (KG) |
---|---|---|
2 | PENHOËT Paul | 64 |
3 | TIBERI Antonio | 62 |
4 | TOUMIRE Hugo | 69 |
5 | BALLERSTEDT Maurice | 76 |
6 | HESSMANN Michel | 78 |
7 | WILLEMS Jago | 64 |
8 | PICCOLO Andrea | 64 |
16 | PONOMAR Andrii | 65 |
17 | VANDENBULCKE Alex | 61 |
18 | ROSNER Linus | 68 |
19 | BRENNER Marco | 59 |
20 | LINDNER Tom | 71 |
21 | BAUDIN Alex | 66 |
23 | ANDRESEN Tobias Lund | 69 |
26 | ŤOUPALÍK Jakub | 65 |
27 | BITTNER Pavel | 73 |
28 | VAN EETVELT Lennert | 63 |
29 | PARET-PEINTRE Valentin | 52 |
33 | WILKSCH Hannes | 62 |
34 | STAUNE-MITTET Johannes | 67 |
35 | VANČO Tobias | 69 |