Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.3 * weight + 31
This means that on average for every extra kilogram weight a rider loses -0.3 positions in the result.
Brenner
1
59 kgPonomar
2
65 kgDebruyne
3
66 kgVacek
4
75 kgBittner
5
73 kgSchandorff Iwersen
6
62 kgGlivar
7
62 kgAndresen
8
69 kgMiholjević
9
72 kgStaune-Mittet
10
67 kgArtz
11
71 kgColnar
12
63 kgMiny
14
62 kgMovchan
15
65 kgLovidius
16
70 kgĆatović
17
62 kgVančo
19
69 kgAhlsson
21
57 kgMusialik
22
63 kg
1
59 kgPonomar
2
65 kgDebruyne
3
66 kgVacek
4
75 kgBittner
5
73 kgSchandorff Iwersen
6
62 kgGlivar
7
62 kgAndresen
8
69 kgMiholjević
9
72 kgStaune-Mittet
10
67 kgArtz
11
71 kgColnar
12
63 kgMiny
14
62 kgMovchan
15
65 kgLovidius
16
70 kgĆatović
17
62 kgVančo
19
69 kgAhlsson
21
57 kgMusialik
22
63 kg
Weight (KG) →
Result →
75
57
1
22
# | Rider | Weight (KG) |
---|---|---|
1 | BRENNER Marco | 59 |
2 | PONOMAR Andrii | 65 |
3 | DEBRUYNE Ramses | 66 |
4 | VACEK Mathias | 75 |
5 | BITTNER Pavel | 73 |
6 | SCHANDORFF IWERSEN Emil | 62 |
7 | GLIVAR Gal | 62 |
8 | ANDRESEN Tobias Lund | 69 |
9 | MIHOLJEVIĆ Fran | 72 |
10 | STAUNE-MITTET Johannes | 67 |
11 | ARTZ Huub | 71 |
12 | COLNAR Aljaž | 63 |
14 | MINY Gilles | 62 |
15 | MOVCHAN Andrii | 65 |
16 | LOVIDIUS Edvin | 70 |
17 | ĆATOVIĆ Nermin | 62 |
19 | VANČO Tobias | 69 |
21 | AHLSSON Jonathan | 57 |
22 | MUSIALIK Jakub | 63 |