Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.5 * weight + 50
This means that on average for every extra kilogram weight a rider loses -0.5 positions in the result.
Fredheim
1
72 kgGautherat
2
70 kgStolić
5
73 kgGrégoire
6
64 kgHerzog
7
74 kgVan Mechelen
8
78 kgKramer
11
74 kgEtxeberria
12
65 kgUijtdebroeks
13
68 kgBelletta
14
73 kgMráz
15
66 kgReinderink
16
59 kgRomeo
17
75 kgBrennsæter
19
66 kgRomele
21
71 kgHajek
22
55 kgHansen
23
68 kgSchrettl
24
63 kgRagilo
27
70 kg
1
72 kgGautherat
2
70 kgStolić
5
73 kgGrégoire
6
64 kgHerzog
7
74 kgVan Mechelen
8
78 kgKramer
11
74 kgEtxeberria
12
65 kgUijtdebroeks
13
68 kgBelletta
14
73 kgMráz
15
66 kgReinderink
16
59 kgRomeo
17
75 kgBrennsæter
19
66 kgRomele
21
71 kgHajek
22
55 kgHansen
23
68 kgSchrettl
24
63 kgRagilo
27
70 kg
Weight (KG) →
Result →
78
55
1
27
# | Rider | Weight (KG) |
---|---|---|
1 | FREDHEIM Stian | 72 |
2 | GAUTHERAT Pierre | 70 |
5 | STOLIĆ Mihajlo | 73 |
6 | GRÉGOIRE Romain | 64 |
7 | HERZOG Emil | 74 |
8 | VAN MECHELEN Vlad | 78 |
11 | KRAMER Jesse | 74 |
12 | ETXEBERRIA Haimar | 65 |
13 | UIJTDEBROEKS Cian | 68 |
14 | BELLETTA Dario Igor | 73 |
15 | MRÁZ Daniel | 66 |
16 | REINDERINK Joris | 59 |
17 | ROMEO Iván | 75 |
19 | BRENNSÆTER Trym | 66 |
21 | ROMELE Alessandro | 71 |
22 | HAJEK Alexander | 55 |
23 | HANSEN Alexander Arnt | 68 |
24 | SCHRETTL Marco | 63 |
27 | RAGILO Frank Aron | 70 |