Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0 * weight + 16
This means that on average for every extra kilogram weight a rider loses -0 positions in the result.
Herzog
1
74 kgVan Mechelen
2
78 kgKadlec
4
61 kgSivok
5
53 kgMráz
6
66 kgKockelmann
8
70 kgSavioz
9
53 kgGroß
10
67 kgPajur
12
78 kgBelletta
13
73 kgTelecký
16
73 kgTamm
20
73 kgTurk
21
63 kgKulset
22
58 kgZabala
23
60 kgPersmeen
25
69 kgStolić
26
73 kgLukeš
28
70 kgJohn
29
65 kg
1
74 kgVan Mechelen
2
78 kgKadlec
4
61 kgSivok
5
53 kgMráz
6
66 kgKockelmann
8
70 kgSavioz
9
53 kgGroß
10
67 kgPajur
12
78 kgBelletta
13
73 kgTelecký
16
73 kgTamm
20
73 kgTurk
21
63 kgKulset
22
58 kgZabala
23
60 kgPersmeen
25
69 kgStolić
26
73 kgLukeš
28
70 kgJohn
29
65 kg
Weight (KG) →
Result →
78
53
1
29
# | Rider | Weight (KG) |
---|---|---|
1 | HERZOG Emil | 74 |
2 | VAN MECHELEN Vlad | 78 |
4 | KADLEC Milan | 61 |
5 | SIVOK Tomáš | 53 |
6 | MRÁZ Daniel | 66 |
8 | KOCKELMANN Mathieu | 70 |
9 | SAVIOZ Colin | 53 |
10 | GROß Matteo | 67 |
12 | PAJUR Romet | 78 |
13 | BELLETTA Dario Igor | 73 |
16 | TELECKÝ Štěpán | 73 |
20 | TAMM Lauri | 73 |
21 | TURK Aljaž | 63 |
22 | KULSET Johannes | 58 |
23 | ZABALA Xabier | 60 |
25 | PERSMEEN Axel | 69 |
26 | STOLIĆ Mihajlo | 73 |
28 | LUKEŠ Jan | 70 |
29 | JOHN Vincent | 65 |