Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.8 * weight + 68
This means that on average for every extra kilogram weight a rider loses -0.8 positions in the result.
Kockelmann
1
70 kgPajur
2
78 kgVan Mechelen
3
78 kgHerzog
4
74 kgBelletta
5
73 kgMorgado
6
71 kgIsidore
8
67 kgSavino
10
70 kgGruel
11
70 kgKadlec
12
61 kgNordhagen
13
59 kgRagilo
15
70 kgStolić
18
73 kgVlot
19
57 kgSivok
20
53 kgMráz
21
66 kgArrighetti
22
74 kgDelle Vedove
23
73 kgNovák
24
64 kgGroß
28
67 kgBárta
29
67 kgTavares
32
58 kgDockx
33
56 kg
1
70 kgPajur
2
78 kgVan Mechelen
3
78 kgHerzog
4
74 kgBelletta
5
73 kgMorgado
6
71 kgIsidore
8
67 kgSavino
10
70 kgGruel
11
70 kgKadlec
12
61 kgNordhagen
13
59 kgRagilo
15
70 kgStolić
18
73 kgVlot
19
57 kgSivok
20
53 kgMráz
21
66 kgArrighetti
22
74 kgDelle Vedove
23
73 kgNovák
24
64 kgGroß
28
67 kgBárta
29
67 kgTavares
32
58 kgDockx
33
56 kg
Weight (KG) →
Result →
78
53
1
33
# | Rider | Weight (KG) |
---|---|---|
1 | KOCKELMANN Mathieu | 70 |
2 | PAJUR Romet | 78 |
3 | VAN MECHELEN Vlad | 78 |
4 | HERZOG Emil | 74 |
5 | BELLETTA Dario Igor | 73 |
6 | MORGADO António | 71 |
8 | ISIDORE Noa | 67 |
10 | SAVINO Federico | 70 |
11 | GRUEL Thibaud | 70 |
12 | KADLEC Milan | 61 |
13 | NORDHAGEN Jørgen | 59 |
15 | RAGILO Frank Aron | 70 |
18 | STOLIĆ Mihajlo | 73 |
19 | VLOT Mees | 57 |
20 | SIVOK Tomáš | 53 |
21 | MRÁZ Daniel | 66 |
22 | ARRIGHETTI Nicolò | 74 |
23 | DELLE VEDOVE Alessio | 73 |
24 | NOVÁK Pavel | 64 |
28 | GROß Matteo | 67 |
29 | BÁRTA Martin | 67 |
32 | TAVARES Gonçalo | 58 |
33 | DOCKX Aaron | 56 |