Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -1.9 * weight + 165
This means that on average for every extra kilogram weight a rider loses -1.9 positions in the result.
Remijn
2
68 kgTaillieu
3
68 kgLarsson
5
60 kgJust Pedersen
6
80 kgSchaper
8
69 kgFietzke
10
60 kgØrn-Kristoff
11
76 kgNagengast
25
62 kgGeerinck
29
67 kgOmrzel
31
62 kgZahálka
35
69 kgDahl
40
68 kgŠumpík
42
63 kgHeath
51
63 kgGoold
52
59 kgMolenaar
54
68 kgPešek
55
67 kgWieland
57
64 kgKrzyśków
61
63 kgReitz
69
57 kgJackowiak
70
65 kgKőrösi
79
65 kgSmith
88
58 kgPatras
96
69 kg
2
68 kgTaillieu
3
68 kgLarsson
5
60 kgJust Pedersen
6
80 kgSchaper
8
69 kgFietzke
10
60 kgØrn-Kristoff
11
76 kgNagengast
25
62 kgGeerinck
29
67 kgOmrzel
31
62 kgZahálka
35
69 kgDahl
40
68 kgŠumpík
42
63 kgHeath
51
63 kgGoold
52
59 kgMolenaar
54
68 kgPešek
55
67 kgWieland
57
64 kgKrzyśków
61
63 kgReitz
69
57 kgJackowiak
70
65 kgKőrösi
79
65 kgSmith
88
58 kgPatras
96
69 kg
Weight (KG) →
Result →
80
57
2
96
# | Rider | Weight (KG) |
---|---|---|
2 | REMIJN Senna | 68 |
3 | TAILLIEU Aldo | 68 |
5 | LARSSON Linus | 60 |
6 | JUST PEDERSEN Carl Emil | 80 |
8 | SCHAPER Joeri | 69 |
10 | FIETZKE Paul | 60 |
11 | ØRN-KRISTOFF Felix | 76 |
25 | NAGENGAST Ruud Junior | 62 |
29 | GEERINCK Seppe | 67 |
31 | OMRZEL Jakob | 62 |
35 | ZAHÁLKA Štěpán | 69 |
40 | DAHL Marius Innhaug | 68 |
42 | ŠUMPÍK Pavel | 63 |
51 | HEATH Will | 63 |
52 | GOOLD Max | 59 |
54 | MOLENAAR Ko | 68 |
55 | PEŠEK Adam | 67 |
57 | WIELAND Fabian | 64 |
61 | KRZYŚKÓW Dominik | 63 |
69 | REITZ Braden | 57 |
70 | JACKOWIAK Jan Michal | 65 |
79 | KŐRÖSI Gábor | 65 |
88 | SMITH Jeremy | 58 |
96 | PATRAS Jakub | 69 |