Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 2.8 * weight - 130
This means that on average for every extra kilogram weight a rider loses 2.8 positions in the result.
Jackowiak
1
65 kgRosato
9
57 kgRooni
22
72 kgKleibrant
26
61 kgDijkman
28
55 kgHewes
29
69 kgHaugetun
30
63 kgEkman
52
64 kgTammepuu
53
68 kgJakobsons
71
68 kgAdamski
72
66 kgBennetzen
74
72 kgVassal
79
65 kgMartinet
80
66 kgPatras
87
69 kgKőrösi
96
65 kgPrünster
118
67 kg
1
65 kgRosato
9
57 kgRooni
22
72 kgKleibrant
26
61 kgDijkman
28
55 kgHewes
29
69 kgHaugetun
30
63 kgEkman
52
64 kgTammepuu
53
68 kgJakobsons
71
68 kgAdamski
72
66 kgBennetzen
74
72 kgVassal
79
65 kgMartinet
80
66 kgPatras
87
69 kgKőrösi
96
65 kgPrünster
118
67 kg
Weight (KG) →
Result →
72
55
1
118
# | Rider | Weight (KG) |
---|---|---|
1 | JACKOWIAK Jan Michal | 65 |
9 | ROSATO Giacomo | 57 |
22 | ROONI Ron | 72 |
26 | KLEIBRANT Wilmer | 61 |
28 | DIJKMAN Daan | 55 |
29 | HEWES Alex | 69 |
30 | HAUGETUN Kristian | 63 |
52 | EKMAN Vilmer | 64 |
53 | TAMMEPUU Riko | 68 |
71 | JAKOBSONS Marks | 68 |
72 | ADAMSKI Kash | 66 |
74 | BENNETZEN Lucca | 72 |
79 | VASSAL Théophile | 65 |
80 | MARTINET Valentin | 66 |
87 | PATRAS Jakub | 69 |
96 | KŐRÖSI Gábor | 65 |
118 | PRÜNSTER Felix | 67 |