Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -5.2 * weight + 404
This means that on average for every extra kilogram weight a rider loses -5.2 positions in the result.
Fitzgerald
5
73 kgHewes
7
69 kgRooni
9
72 kgBennetzen
15
72 kgTammepuu
26
68 kgVassal
41
65 kgPrünster
52
67 kgKleibrant
53
61 kgJakobsons
60
68 kgPatras
66
69 kgKőrösi
77
65 kgDijkman
86
55 kgRosato
93
57 kgMartinet
97
66 kgEkman
104
64 kgHaugetun
113
63 kgJackowiak
116
65 kgAdamski
128
66 kg
5
73 kgHewes
7
69 kgRooni
9
72 kgBennetzen
15
72 kgTammepuu
26
68 kgVassal
41
65 kgPrünster
52
67 kgKleibrant
53
61 kgJakobsons
60
68 kgPatras
66
69 kgKőrösi
77
65 kgDijkman
86
55 kgRosato
93
57 kgMartinet
97
66 kgEkman
104
64 kgHaugetun
113
63 kgJackowiak
116
65 kgAdamski
128
66 kg
Weight (KG) →
Result →
73
55
5
128
# | Rider | Weight (KG) |
---|---|---|
5 | FITZGERALD Max | 73 |
7 | HEWES Alex | 69 |
9 | ROONI Ron | 72 |
15 | BENNETZEN Lucca | 72 |
26 | TAMMEPUU Riko | 68 |
41 | VASSAL Théophile | 65 |
52 | PRÜNSTER Felix | 67 |
53 | KLEIBRANT Wilmer | 61 |
60 | JAKOBSONS Marks | 68 |
66 | PATRAS Jakub | 69 |
77 | KŐRÖSI Gábor | 65 |
86 | DIJKMAN Daan | 55 |
93 | ROSATO Giacomo | 57 |
97 | MARTINET Valentin | 66 |
104 | EKMAN Vilmer | 64 |
113 | HAUGETUN Kristian | 63 |
116 | JACKOWIAK Jan Michal | 65 |
128 | ADAMSKI Kash | 66 |