Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 2.7 * weight - 115
This means that on average for every extra kilogram weight a rider loses 2.7 positions in the result.
Rosato
7
57 kgJackowiak
9
65 kgHewes
13
69 kgRooni
26
72 kgKleibrant
28
61 kgHaugetun
35
63 kgDijkman
39
55 kgJakobsons
53
68 kgEkman
57
64 kgTammepuu
68
68 kgAdamski
77
66 kgBennetzen
80
72 kgMartinet
86
66 kgVassal
87
65 kgPatras
105
69 kgKőrösi
110
65 kgPrünster
127
67 kg
7
57 kgJackowiak
9
65 kgHewes
13
69 kgRooni
26
72 kgKleibrant
28
61 kgHaugetun
35
63 kgDijkman
39
55 kgJakobsons
53
68 kgEkman
57
64 kgTammepuu
68
68 kgAdamski
77
66 kgBennetzen
80
72 kgMartinet
86
66 kgVassal
87
65 kgPatras
105
69 kgKőrösi
110
65 kgPrünster
127
67 kg
Weight (KG) →
Result →
72
55
7
127
# | Rider | Weight (KG) |
---|---|---|
7 | ROSATO Giacomo | 57 |
9 | JACKOWIAK Jan Michal | 65 |
13 | HEWES Alex | 69 |
26 | ROONI Ron | 72 |
28 | KLEIBRANT Wilmer | 61 |
35 | HAUGETUN Kristian | 63 |
39 | DIJKMAN Daan | 55 |
53 | JAKOBSONS Marks | 68 |
57 | EKMAN Vilmer | 64 |
68 | TAMMEPUU Riko | 68 |
77 | ADAMSKI Kash | 66 |
80 | BENNETZEN Lucca | 72 |
86 | MARTINET Valentin | 66 |
87 | VASSAL Théophile | 65 |
105 | PATRAS Jakub | 69 |
110 | KŐRÖSI Gábor | 65 |
127 | PRÜNSTER Felix | 67 |