Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.2 * weight + 73
This means that on average for every extra kilogram weight a rider loses -0.2 positions in the result.
Ekman
9
64 kgHewes
15
69 kgRooni
20
72 kgTammepuu
29
68 kgJakobsons
39
68 kgKleibrant
41
61 kgDijkman
48
55 kgHaugetun
56
63 kgJackowiak
66
65 kgMartinet
67
66 kgAdamski
70
66 kgRosato
78
57 kgBennetzen
83
72 kgKőrösi
96
65 kgVassal
98
65 kgPatras
101
69 kgPrünster
110
67 kg
9
64 kgHewes
15
69 kgRooni
20
72 kgTammepuu
29
68 kgJakobsons
39
68 kgKleibrant
41
61 kgDijkman
48
55 kgHaugetun
56
63 kgJackowiak
66
65 kgMartinet
67
66 kgAdamski
70
66 kgRosato
78
57 kgBennetzen
83
72 kgKőrösi
96
65 kgVassal
98
65 kgPatras
101
69 kgPrünster
110
67 kg
Weight (KG) →
Result →
72
55
9
110
# | Rider | Weight (KG) |
---|---|---|
9 | EKMAN Vilmer | 64 |
15 | HEWES Alex | 69 |
20 | ROONI Ron | 72 |
29 | TAMMEPUU Riko | 68 |
39 | JAKOBSONS Marks | 68 |
41 | KLEIBRANT Wilmer | 61 |
48 | DIJKMAN Daan | 55 |
56 | HAUGETUN Kristian | 63 |
66 | JACKOWIAK Jan Michal | 65 |
67 | MARTINET Valentin | 66 |
70 | ADAMSKI Kash | 66 |
78 | ROSATO Giacomo | 57 |
83 | BENNETZEN Lucca | 72 |
96 | KŐRÖSI Gábor | 65 |
98 | VASSAL Théophile | 65 |
101 | PATRAS Jakub | 69 |
110 | PRÜNSTER Felix | 67 |