Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.2 * weight + 28
This means that on average for every extra kilogram weight a rider loses -0.2 positions in the result.
Spokes
1
63 kgKasperkiewicz
2
71 kgSisr
6
72 kgPibernik
7
60 kgCuadros
8
67 kgHoelgaard
9
74 kgVan Gestel
10
74 kgVan Rooy
11
70 kgMas
12
61 kgHemroulle
14
66 kgBoroš
15
69 kgTurek
16
72 kgVermeulen
17
66 kgDe Witte
18
61 kgLópez-Cózar
20
70 kgPower
21
68 kgStosz
22
70 kgDvorsky
23
64 kgRuyters
25
69 kgČerný
26
75 kgBaillifard
28
54 kg
1
63 kgKasperkiewicz
2
71 kgSisr
6
72 kgPibernik
7
60 kgCuadros
8
67 kgHoelgaard
9
74 kgVan Gestel
10
74 kgVan Rooy
11
70 kgMas
12
61 kgHemroulle
14
66 kgBoroš
15
69 kgTurek
16
72 kgVermeulen
17
66 kgDe Witte
18
61 kgLópez-Cózar
20
70 kgPower
21
68 kgStosz
22
70 kgDvorsky
23
64 kgRuyters
25
69 kgČerný
26
75 kgBaillifard
28
54 kg
Weight (KG) →
Result →
75
54
1
28
# | Rider | Weight (KG) |
---|---|---|
1 | SPOKES Samuel | 63 |
2 | KASPERKIEWICZ Przemysław | 71 |
6 | SISR František | 72 |
7 | PIBERNIK Luka | 60 |
8 | CUADROS Álvaro | 67 |
9 | HOELGAARD Markus | 74 |
10 | VAN GESTEL Dries | 74 |
11 | VAN ROOY Kenneth | 70 |
12 | MAS Enric | 61 |
14 | HEMROULLE Johan | 66 |
15 | BOROŠ Michael | 69 |
16 | TUREK Daniel | 72 |
17 | VERMEULEN Alexey | 66 |
18 | DE WITTE Mathias | 61 |
20 | LÓPEZ-CÓZAR Juan Antonio | 70 |
21 | POWER Robert | 68 |
22 | STOSZ Patryk | 70 |
23 | DVORSKY David | 64 |
25 | RUYTERS Brecht | 69 |
26 | ČERNÝ Josef | 75 |
28 | BAILLIFARD Valentin | 54 |