Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.1 * weight + 18
This means that on average for every extra kilogram weight a rider loses -0.1 positions in the result.
Mühlberger
1
64 kgVliegen
2
70 kgEiking
3
75 kgPavlič
4
65 kgDe Plus
5
67 kgCullaigh
6
78 kgMoscon
7
71 kgKämna
8
65 kgTurek
9
72 kgPadun
10
67 kgChaves
11
60 kgČerný
12
75 kgKorošec
13
75 kgArslanov
15
63 kgMamykin
16
62 kgSisr
17
72 kgKamp
19
74 kgVan Rooy
20
70 kgDavies
22
66 kgPetilli
23
65 kgLunke
24
69 kgStosz
25
70 kgGabburo
26
63 kgKoch
28
75 kg
1
64 kgVliegen
2
70 kgEiking
3
75 kgPavlič
4
65 kgDe Plus
5
67 kgCullaigh
6
78 kgMoscon
7
71 kgKämna
8
65 kgTurek
9
72 kgPadun
10
67 kgChaves
11
60 kgČerný
12
75 kgKorošec
13
75 kgArslanov
15
63 kgMamykin
16
62 kgSisr
17
72 kgKamp
19
74 kgVan Rooy
20
70 kgDavies
22
66 kgPetilli
23
65 kgLunke
24
69 kgStosz
25
70 kgGabburo
26
63 kgKoch
28
75 kg
Weight (KG) →
Result →
78
60
1
28
| # | Rider | Weight (KG) |
|---|---|---|
| 1 | MÜHLBERGER Gregor | 64 |
| 2 | VLIEGEN Loïc | 70 |
| 3 | EIKING Odd Christian | 75 |
| 4 | PAVLIČ Marko | 65 |
| 5 | DE PLUS Laurens | 67 |
| 6 | CULLAIGH Gabriel | 78 |
| 7 | MOSCON Gianni | 71 |
| 8 | KÄMNA Lennard | 65 |
| 9 | TUREK Daniel | 72 |
| 10 | PADUN Mark | 67 |
| 11 | CHAVES German Enrique | 60 |
| 12 | ČERNÝ Josef | 75 |
| 13 | KOROŠEC Rok | 75 |
| 15 | ARSLANOV Ildar | 63 |
| 16 | MAMYKIN Matvey | 62 |
| 17 | SISR František | 72 |
| 19 | KAMP Alexander | 74 |
| 20 | VAN ROOY Kenneth | 70 |
| 22 | DAVIES Scott | 66 |
| 23 | PETILLI Simone | 65 |
| 24 | LUNKE Sindre | 69 |
| 25 | STOSZ Patryk | 70 |
| 26 | GABBURO Davide | 63 |
| 28 | KOCH Jonas | 75 |