Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.1 * weight + 6
This means that on average for every extra kilogram weight a rider loses 0.1 positions in the result.
Mühlberger
1
64 kgCullaigh
2
78 kgDe Plus
3
67 kgPavlič
4
65 kgTurek
5
72 kgEiking
6
75 kgVliegen
7
70 kgChaves
8
60 kgKorošec
9
75 kgArslanov
10
63 kgSisr
11
72 kgKämna
12
65 kgMoscon
13
71 kgMamykin
14
62 kgKamp
16
74 kgPadun
17
67 kgVan Rooy
18
70 kgPetilli
20
65 kgStosz
21
70 kgGabburo
22
63 kgLunke
23
69 kgČerný
24
75 kgKoch
25
75 kg
1
64 kgCullaigh
2
78 kgDe Plus
3
67 kgPavlič
4
65 kgTurek
5
72 kgEiking
6
75 kgVliegen
7
70 kgChaves
8
60 kgKorošec
9
75 kgArslanov
10
63 kgSisr
11
72 kgKämna
12
65 kgMoscon
13
71 kgMamykin
14
62 kgKamp
16
74 kgPadun
17
67 kgVan Rooy
18
70 kgPetilli
20
65 kgStosz
21
70 kgGabburo
22
63 kgLunke
23
69 kgČerný
24
75 kgKoch
25
75 kg
Weight (KG) →
Result →
78
60
1
25
# | Rider | Weight (KG) |
---|---|---|
1 | MÜHLBERGER Gregor | 64 |
2 | CULLAIGH Gabriel | 78 |
3 | DE PLUS Laurens | 67 |
4 | PAVLIČ Marko | 65 |
5 | TUREK Daniel | 72 |
6 | EIKING Odd Christian | 75 |
7 | VLIEGEN Loïc | 70 |
8 | CHAVES German Enrique | 60 |
9 | KOROŠEC Rok | 75 |
10 | ARSLANOV Ildar | 63 |
11 | SISR František | 72 |
12 | KÄMNA Lennard | 65 |
13 | MOSCON Gianni | 71 |
14 | MAMYKIN Matvey | 62 |
16 | KAMP Alexander | 74 |
17 | PADUN Mark | 67 |
18 | VAN ROOY Kenneth | 70 |
20 | PETILLI Simone | 65 |
21 | STOSZ Patryk | 70 |
22 | GABBURO Davide | 63 |
23 | LUNKE Sindre | 69 |
24 | ČERNÝ Josef | 75 |
25 | KOCH Jonas | 75 |