Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.3 * weight + 32
This means that on average for every extra kilogram weight a rider loses -0.3 positions in the result.
Schelling
1
66 kgSchlegel
2
72 kgPedersen
3
71 kgNorsgaard
4
88 kgZimmermann
5
70 kgAbrahamsen
6
78 kgLambrecht
7
56 kgVanhoucke
8
65 kgGall
9
66 kgLafay
11
65 kgHirschi
12
61 kgGuglielmi
13
66 kgRappo
15
63 kgJourniaux
16
63 kgEg
17
60 kgSchinnagel
18
68 kgSobrero
19
63 kgCosnefroy
20
65 kgCras
21
65 kgNych
22
76 kg
1
66 kgSchlegel
2
72 kgPedersen
3
71 kgNorsgaard
4
88 kgZimmermann
5
70 kgAbrahamsen
6
78 kgLambrecht
7
56 kgVanhoucke
8
65 kgGall
9
66 kgLafay
11
65 kgHirschi
12
61 kgGuglielmi
13
66 kgRappo
15
63 kgJourniaux
16
63 kgEg
17
60 kgSchinnagel
18
68 kgSobrero
19
63 kgCosnefroy
20
65 kgCras
21
65 kgNych
22
76 kg
Weight (KG) →
Result →
88
56
1
22
# | Rider | Weight (KG) |
---|---|---|
1 | SCHELLING Ide | 66 |
2 | SCHLEGEL Michal | 72 |
3 | PEDERSEN Casper | 71 |
4 | NORSGAARD Mathias | 88 |
5 | ZIMMERMANN Georg | 70 |
6 | ABRAHAMSEN Jonas | 78 |
7 | LAMBRECHT Bjorg | 56 |
8 | VANHOUCKE Harm | 65 |
9 | GALL Felix | 66 |
11 | LAFAY Victor | 65 |
12 | HIRSCHI Marc | 61 |
13 | GUGLIELMI Simon | 66 |
15 | RAPPO Anthony | 63 |
16 | JOURNIAUX Axel | 63 |
17 | EG Niklas | 60 |
18 | SCHINNAGEL Johannes | 68 |
19 | SOBRERO Matteo | 63 |
20 | COSNEFROY Benoît | 65 |
21 | CRAS Steff | 65 |
22 | NYCH Artem | 76 |