Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.2 * weight + 1
This means that on average for every extra kilogram weight a rider loses 0.2 positions in the result.
Pogačar
1
66 kgSchultz
3
60 kgIversen
4
77 kgAnderson
5
70 kgVingegaard
6
58 kgOliveira
7
68 kgBouwmans
9
64 kgVerschaeve
10
62 kgNatarov
11
68 kgHirschi
12
61 kgOtruba
14
75 kgYamamoto
15
63 kgBais
16
66 kgHayter
18
70 kgGregaard
19
66 kgMäder
21
61 kgSchinnagel
22
68 kgEekhoff
23
75 kgBostock
24
69 kgGall
28
66 kgvan den Dool
29
68 kgFedeli
30
65 kg
1
66 kgSchultz
3
60 kgIversen
4
77 kgAnderson
5
70 kgVingegaard
6
58 kgOliveira
7
68 kgBouwmans
9
64 kgVerschaeve
10
62 kgNatarov
11
68 kgHirschi
12
61 kgOtruba
14
75 kgYamamoto
15
63 kgBais
16
66 kgHayter
18
70 kgGregaard
19
66 kgMäder
21
61 kgSchinnagel
22
68 kgEekhoff
23
75 kgBostock
24
69 kgGall
28
66 kgvan den Dool
29
68 kgFedeli
30
65 kg
Weight (KG) →
Result →
77
58
1
30
# | Rider | Weight (KG) |
---|---|---|
1 | POGAČAR Tadej | 66 |
3 | SCHULTZ Jesper | 60 |
4 | IVERSEN Rasmus Byriel | 77 |
5 | ANDERSON Edward | 70 |
6 | VINGEGAARD Jonas | 58 |
7 | OLIVEIRA Ivo | 68 |
9 | BOUWMANS Dylan | 64 |
10 | VERSCHAEVE Viktor | 62 |
11 | NATAROV Yuriy | 68 |
12 | HIRSCHI Marc | 61 |
14 | OTRUBA Jakub | 75 |
15 | YAMAMOTO Masaki | 63 |
16 | BAIS Mattia | 66 |
18 | HAYTER Ethan | 70 |
19 | GREGAARD Jonas | 66 |
21 | MÄDER Gino | 61 |
22 | SCHINNAGEL Johannes | 68 |
23 | EEKHOFF Nils | 75 |
24 | BOSTOCK Matthew | 69 |
28 | GALL Felix | 66 |
29 | VAN DEN DOOL Jens | 68 |
30 | FEDELI Alessandro | 65 |