Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.2 * weight + 28
This means that on average for every extra kilogram weight a rider loses -0.2 positions in the result.
Van Eetvelt
1
63 kgFranco
3
58 kgBittner
4
73 kgPorter
5
66 kgWatson
6
68 kgVacek
7
75 kgPlowright
8
80 kgClynhens
9
61 kgCostiou
10
64 kgHindsgaul
11
67 kgWood
12
64 kgGudmestad
13
82 kgVacek
14
60 kgDe Pooter
15
66 kgRouland
16
55 kgKubiš
18
70 kgPiganzoli
19
61 kgSteininger
20
64 kgUhlig
22
69 kgDe Cassan
23
61 kgSilva
26
67 kgLindner
27
71 kgGonçalves
28
55 kg
1
63 kgFranco
3
58 kgBittner
4
73 kgPorter
5
66 kgWatson
6
68 kgVacek
7
75 kgPlowright
8
80 kgClynhens
9
61 kgCostiou
10
64 kgHindsgaul
11
67 kgWood
12
64 kgGudmestad
13
82 kgVacek
14
60 kgDe Pooter
15
66 kgRouland
16
55 kgKubiš
18
70 kgPiganzoli
19
61 kgSteininger
20
64 kgUhlig
22
69 kgDe Cassan
23
61 kgSilva
26
67 kgLindner
27
71 kgGonçalves
28
55 kg
Weight (KG) →
Result →
82
55
1
28
# | Rider | Weight (KG) |
---|---|---|
1 | VAN EETVELT Lennert | 63 |
3 | FRANCO Alejandro | 58 |
4 | BITTNER Pavel | 73 |
5 | PORTER Rudy | 66 |
6 | WATSON Samuel | 68 |
7 | VACEK Mathias | 75 |
8 | PLOWRIGHT Jensen | 80 |
9 | CLYNHENS Toon | 61 |
10 | COSTIOU Ewen | 64 |
11 | HINDSGAUL Jacob | 67 |
12 | WOOD Harrison | 64 |
13 | GUDMESTAD Tord | 82 |
14 | VACEK Karel | 60 |
15 | DE POOTER Dries | 66 |
16 | ROULAND Louis | 55 |
18 | KUBIŠ Lukáš | 70 |
19 | PIGANZOLI Davide | 61 |
20 | STEININGER Fabian | 64 |
22 | UHLIG Henri | 69 |
23 | DE CASSAN Davide | 61 |
26 | SILVA Pedro | 67 |
27 | LINDNER Tom | 71 |
28 | GONÇALVES Hélder | 55 |