Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0 * weight + 14
This means that on average for every extra kilogram weight a rider loses -0 positions in the result.
Gautherat
2
70 kgDe Cassan
3
61 kgHuby
4
56 kgEulálio
6
62 kgHarteel
8
66 kgNovák
9
64 kgArrighetti
10
74 kgVandenstorme
12
64 kgRouland
13
55 kgŤoupalík
14
65 kgRaccani
15
64 kgGlivar
16
64 kgCamrda
17
63 kgdel Toro
20
64 kgLopes
21
59 kgTavares
22
58 kgPomorski
23
76 kgKadlec
27
61 kg
2
70 kgDe Cassan
3
61 kgHuby
4
56 kgEulálio
6
62 kgHarteel
8
66 kgNovák
9
64 kgArrighetti
10
74 kgVandenstorme
12
64 kgRouland
13
55 kgŤoupalík
14
65 kgRaccani
15
64 kgGlivar
16
64 kgCamrda
17
63 kgdel Toro
20
64 kgLopes
21
59 kgTavares
22
58 kgPomorski
23
76 kgKadlec
27
61 kg
Weight (KG) →
Result →
76
55
2
27
# | Rider | Weight (KG) |
---|---|---|
2 | GAUTHERAT Pierre | 70 |
3 | DE CASSAN Davide | 61 |
4 | HUBY Antoine | 56 |
6 | EULÁLIO Afonso | 62 |
8 | HARTEEL Jelle | 66 |
9 | NOVÁK Pavel | 64 |
10 | ARRIGHETTI Nicolò | 74 |
12 | VANDENSTORME Dylan | 64 |
13 | ROULAND Louis | 55 |
14 | ŤOUPALÍK Jakub | 65 |
15 | RACCANI Simone | 64 |
16 | GLIVAR Gal | 64 |
17 | CAMRDA Karel | 63 |
20 | DEL TORO Isaac | 64 |
21 | LOPES Lucas | 59 |
22 | TAVARES Gonçalo | 58 |
23 | POMORSKI Michał | 76 |
27 | KADLEC Milan | 61 |