Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.1 * weight + 13
This means that on average for every extra kilogram weight a rider loses 0.1 positions in the result.
Gualdi
1
61 kgØxenberg
5
69 kgKockelmann
7
70 kgHobbs
9
67 kgMichels
10
59 kgVan Kerckhove
16
70 kgBelletta
17
73 kgStieger
18
68 kgGajdulewicz
19
67 kgColorado
23
61 kgTaillieu
25
68 kgMráz
26
66 kgPřidal
27
66 kgBarhoumi
29
73 kgRiška
33
70 kgZapata
35
62 kgBasset
37
69 kgQuintero
38
62 kg
1
61 kgØxenberg
5
69 kgKockelmann
7
70 kgHobbs
9
67 kgMichels
10
59 kgVan Kerckhove
16
70 kgBelletta
17
73 kgStieger
18
68 kgGajdulewicz
19
67 kgColorado
23
61 kgTaillieu
25
68 kgMráz
26
66 kgPřidal
27
66 kgBarhoumi
29
73 kgRiška
33
70 kgZapata
35
62 kgBasset
37
69 kgQuintero
38
62 kg
Weight (KG) →
Result →
73
59
1
38
# | Rider | Weight (KG) |
---|---|---|
1 | GUALDI Simone | 61 |
5 | ØXENBERG Peter | 69 |
7 | KOCKELMANN Mathieu | 70 |
9 | HOBBS Noah | 67 |
10 | MICHELS Jente | 59 |
16 | VAN KERCKHOVE Matisse | 70 |
17 | BELLETTA Dario Igor | 73 |
18 | STIEGER Adrian | 68 |
19 | GAJDULEWICZ Mateusz | 67 |
23 | COLORADO William | 61 |
25 | TAILLIEU Aldo | 68 |
26 | MRÁZ Daniel | 66 |
27 | PŘIDAL Tomáš | 66 |
29 | BARHOUMI Ilian Alexandre | 73 |
33 | RIŠKA Richard | 70 |
35 | ZAPATA Mauricio | 62 |
37 | BASSET Pierre-Henry | 69 |
38 | QUINTERO Juan Diego | 62 |