Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.3 * weight + 14
This means that on average for every extra kilogram weight a rider loses 0.3 positions in the result.
Schur
1
73 kgAdler
5
62 kgMelikhov
7
76 kgKapitonov
8
73 kgFornalczyk
10
77 kgEckstein
13
57 kgGazda
16
69 kgTrapè
17
75 kgPodobas
21
70 kgKotsev
30
72 kgLevačić
51
77 kgHorváth
52
66 kgŽirovnik
53
72 kgTonucci
54
68 kgMoiceanu
55
72 kgJuszko
61
78 kgHautalahti
69
75 kgMegyerdi
75
65 kgThull
80
70 kg
1
73 kgAdler
5
62 kgMelikhov
7
76 kgKapitonov
8
73 kgFornalczyk
10
77 kgEckstein
13
57 kgGazda
16
69 kgTrapè
17
75 kgPodobas
21
70 kgKotsev
30
72 kgLevačić
51
77 kgHorváth
52
66 kgŽirovnik
53
72 kgTonucci
54
68 kgMoiceanu
55
72 kgJuszko
61
78 kgHautalahti
69
75 kgMegyerdi
75
65 kgThull
80
70 kg
Weight (KG) →
Result →
78
57
1
80
# | Rider | Weight (KG) |
---|---|---|
1 | SCHUR Gustav-Adolf | 73 |
5 | ADLER Egon | 62 |
7 | MELIKHOV Yury | 76 |
8 | KAPITONOV Viktor | 73 |
10 | FORNALCZYK Bogusław | 77 |
13 | ECKSTEIN Bernhard | 57 |
16 | GAZDA Stanislaw | 69 |
17 | TRAPÈ Livio | 75 |
21 | PODOBAS Wiesław | 70 |
30 | KOTSEV Boyan | 72 |
51 | LEVAČIĆ Ivan | 77 |
52 | HORVÁTH Ferenc | 66 |
53 | ŽIROVNIK Janez | 72 |
54 | TONUCCI Giuseppe | 68 |
55 | MOICEANU Gabriel | 72 |
61 | JUSZKO Janos | 78 |
69 | HAUTALAHTI Unto | 75 |
75 | MEGYERDI Antal | 65 |
80 | THULL Roger | 70 |