Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.5 * weight - 17
This means that on average for every extra kilogram weight a rider loses 0.5 positions in the result.
Melikhov
1
76 kgKapitonov
2
73 kgEckstein
3
57 kgGöransson
6
69 kgCosma
7
82 kgSchur
8
73 kgHagen
9
74 kgPettersson
13
75 kgSaidkhuzhin
14
69 kgPetrov
16
76 kgMegyerdi
18
65 kgGazda
20
69 kgKotev
22
82 kgGeorgiev Demirev
26
72 kgFornalczyk
29
77 kgLaidlaw
31
63 kgLevačić
34
77 kgHorváth
35
66 kgŽirovnik
41
72 kgHautalahti
48
75 kgDigerud
53
75 kgČubrić
57
80 kg
1
76 kgKapitonov
2
73 kgEckstein
3
57 kgGöransson
6
69 kgCosma
7
82 kgSchur
8
73 kgHagen
9
74 kgPettersson
13
75 kgSaidkhuzhin
14
69 kgPetrov
16
76 kgMegyerdi
18
65 kgGazda
20
69 kgKotev
22
82 kgGeorgiev Demirev
26
72 kgFornalczyk
29
77 kgLaidlaw
31
63 kgLevačić
34
77 kgHorváth
35
66 kgŽirovnik
41
72 kgHautalahti
48
75 kgDigerud
53
75 kgČubrić
57
80 kg
Weight (KG) →
Result →
82
57
1
57
| # | Rider | Weight (KG) |
|---|---|---|
| 1 | MELIKHOV Yury | 76 |
| 2 | KAPITONOV Viktor | 73 |
| 3 | ECKSTEIN Bernhard | 57 |
| 6 | GÖRANSSON Gunnar | 69 |
| 7 | COSMA Ion | 82 |
| 8 | SCHUR Gustav-Adolf | 73 |
| 9 | HAGEN Erich | 74 |
| 13 | PETTERSSON Gösta | 75 |
| 14 | SAIDKHUZHIN Gainan | 69 |
| 16 | PETROV Aleksei | 76 |
| 18 | MEGYERDI Antal | 65 |
| 20 | GAZDA Stanislaw | 69 |
| 22 | KOTEV Dimitar | 82 |
| 26 | GEORGIEV DEMIREV Stoyan | 72 |
| 29 | FORNALCZYK Bogusław | 77 |
| 31 | LAIDLAW Ken | 63 |
| 34 | LEVAČIĆ Ivan | 77 |
| 35 | HORVÁTH Ferenc | 66 |
| 41 | ŽIROVNIK Janez | 72 |
| 48 | HAUTALAHTI Unto | 75 |
| 53 | DIGERUD Per | 75 |
| 57 | ČUBRIĆ Radoš | 80 |