Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 3.7 * weight + 499
This means that on average for every extra kilogram weight a rider loses 3.7 positions in the result.
Petrov
2
76 kgSchur
3
73 kgMegyerdi
5
65 kgGazda
6
69 kgFornalczyk
7
77 kgSaidkhuzhin
990
69 kgMelikhov
990
76 kgHagen
990
74 kgEckstein
990
57 kgGöransson
990
69 kgCosma
990
82 kgKapitonov
990
73 kgPettersson
990
75 kgLevačić
990
77 kgKotev
990
82 kgGeorgiev Demirev
990
72 kgLaidlaw
990
63 kgHorváth
990
66 kgŽirovnik
990
72 kgHautalahti
990
75 kgDigerud
990
75 kgČubrić
990
80 kg
2
76 kgSchur
3
73 kgMegyerdi
5
65 kgGazda
6
69 kgFornalczyk
7
77 kgSaidkhuzhin
990
69 kgMelikhov
990
76 kgHagen
990
74 kgEckstein
990
57 kgGöransson
990
69 kgCosma
990
82 kgKapitonov
990
73 kgPettersson
990
75 kgLevačić
990
77 kgKotev
990
82 kgGeorgiev Demirev
990
72 kgLaidlaw
990
63 kgHorváth
990
66 kgŽirovnik
990
72 kgHautalahti
990
75 kgDigerud
990
75 kgČubrić
990
80 kg
Weight (KG) →
Result →
82
57
2
990
# | Rider | Weight (KG) |
---|---|---|
2 | PETROV Aleksei | 76 |
3 | SCHUR Gustav-Adolf | 73 |
5 | MEGYERDI Antal | 65 |
6 | GAZDA Stanislaw | 69 |
7 | FORNALCZYK Bogusław | 77 |
990 | SAIDKHUZHIN Gainan | 69 |
990 | MELIKHOV Yury | 76 |
990 | HAGEN Erich | 74 |
990 | ECKSTEIN Bernhard | 57 |
990 | GÖRANSSON Gunnar | 69 |
990 | COSMA Ion | 82 |
990 | KAPITONOV Viktor | 73 |
990 | PETTERSSON Gösta | 75 |
990 | LEVAČIĆ Ivan | 77 |
990 | KOTEV Dimitar | 82 |
990 | GEORGIEV DEMIREV Stoyan | 72 |
990 | LAIDLAW Ken | 63 |
990 | HORVÁTH Ferenc | 66 |
990 | ŽIROVNIK Janez | 72 |
990 | HAUTALAHTI Unto | 75 |
990 | DIGERUD Per | 75 |
990 | ČUBRIĆ Radoš | 80 |