Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 16.9 * weight - 506
This means that on average for every extra kilogram weight a rider loses 16.9 positions in the result.
Melikhov
1
76 kgEckstein
2
57 kgCosma
6
82 kgKapitonov
7
73 kgSaidkhuzhin
8
69 kgMegyerdi
9
65 kgGazda
990
69 kgHagen
990
74 kgPetrov
990
76 kgGöransson
990
69 kgSchur
990
73 kgFornalczyk
990
77 kgPettersson
990
75 kgLevačić
990
77 kgKotev
990
82 kgGeorgiev Demirev
990
72 kgLaidlaw
990
63 kgHorváth
990
66 kgŽirovnik
990
72 kgHautalahti
990
75 kgDigerud
990
75 kgČubrić
990
80 kg
1
76 kgEckstein
2
57 kgCosma
6
82 kgKapitonov
7
73 kgSaidkhuzhin
8
69 kgMegyerdi
9
65 kgGazda
990
69 kgHagen
990
74 kgPetrov
990
76 kgGöransson
990
69 kgSchur
990
73 kgFornalczyk
990
77 kgPettersson
990
75 kgLevačić
990
77 kgKotev
990
82 kgGeorgiev Demirev
990
72 kgLaidlaw
990
63 kgHorváth
990
66 kgŽirovnik
990
72 kgHautalahti
990
75 kgDigerud
990
75 kgČubrić
990
80 kg
Weight (KG) →
Result →
82
57
1
990
# | Rider | Weight (KG) |
---|---|---|
1 | MELIKHOV Yury | 76 |
2 | ECKSTEIN Bernhard | 57 |
6 | COSMA Ion | 82 |
7 | KAPITONOV Viktor | 73 |
8 | SAIDKHUZHIN Gainan | 69 |
9 | MEGYERDI Antal | 65 |
990 | GAZDA Stanislaw | 69 |
990 | HAGEN Erich | 74 |
990 | PETROV Aleksei | 76 |
990 | GÖRANSSON Gunnar | 69 |
990 | SCHUR Gustav-Adolf | 73 |
990 | FORNALCZYK Bogusław | 77 |
990 | PETTERSSON Gösta | 75 |
990 | LEVAČIĆ Ivan | 77 |
990 | KOTEV Dimitar | 82 |
990 | GEORGIEV DEMIREV Stoyan | 72 |
990 | LAIDLAW Ken | 63 |
990 | HORVÁTH Ferenc | 66 |
990 | ŽIROVNIK Janez | 72 |
990 | HAUTALAHTI Unto | 75 |
990 | DIGERUD Per | 75 |
990 | ČUBRIĆ Radoš | 80 |