Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 14.4 * weight - 322
This means that on average for every extra kilogram weight a rider loses 14.4 positions in the result.
Petrov
1
76 kgMelikhov
2
76 kgSaidkhuzhin
3
69 kgSchur
5
73 kgEckstein
6
57 kgKapitonov
9
73 kgMegyerdi
990
65 kgGazda
990
69 kgHagen
990
74 kgGöransson
990
69 kgFornalczyk
990
77 kgCosma
990
82 kgPettersson
990
75 kgLevačić
990
77 kgKotev
990
82 kgGeorgiev Demirev
990
72 kgLaidlaw
990
63 kgHorváth
990
66 kgŽirovnik
990
72 kgHautalahti
990
75 kgDigerud
990
75 kgČubrić
990
80 kg
1
76 kgMelikhov
2
76 kgSaidkhuzhin
3
69 kgSchur
5
73 kgEckstein
6
57 kgKapitonov
9
73 kgMegyerdi
990
65 kgGazda
990
69 kgHagen
990
74 kgGöransson
990
69 kgFornalczyk
990
77 kgCosma
990
82 kgPettersson
990
75 kgLevačić
990
77 kgKotev
990
82 kgGeorgiev Demirev
990
72 kgLaidlaw
990
63 kgHorváth
990
66 kgŽirovnik
990
72 kgHautalahti
990
75 kgDigerud
990
75 kgČubrić
990
80 kg
Weight (KG) →
Result →
82
57
1
990
# | Rider | Weight (KG) |
---|---|---|
1 | PETROV Aleksei | 76 |
2 | MELIKHOV Yury | 76 |
3 | SAIDKHUZHIN Gainan | 69 |
5 | SCHUR Gustav-Adolf | 73 |
6 | ECKSTEIN Bernhard | 57 |
9 | KAPITONOV Viktor | 73 |
990 | MEGYERDI Antal | 65 |
990 | GAZDA Stanislaw | 69 |
990 | HAGEN Erich | 74 |
990 | GÖRANSSON Gunnar | 69 |
990 | FORNALCZYK Bogusław | 77 |
990 | COSMA Ion | 82 |
990 | PETTERSSON Gösta | 75 |
990 | LEVAČIĆ Ivan | 77 |
990 | KOTEV Dimitar | 82 |
990 | GEORGIEV DEMIREV Stoyan | 72 |
990 | LAIDLAW Ken | 63 |
990 | HORVÁTH Ferenc | 66 |
990 | ŽIROVNIK Janez | 72 |
990 | HAUTALAHTI Unto | 75 |
990 | DIGERUD Per | 75 |
990 | ČUBRIĆ Radoš | 80 |