Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.5 * weight - 6
This means that on average for every extra kilogram weight a rider loses 0.5 positions in the result.
Saidkhuzhin
1
69 kgMelikhov
2
76 kgGazda
3
69 kgPetrov
5
76 kgMoiceanu
6
72 kgKapitonov
8
73 kgJuszko
12
78 kgKudra
13
68 kgZieliński
14
80 kgFornalczyk
15
77 kgRuiner
24
64 kgBracke
26
79 kgMegyerdi
27
65 kgKotev
33
82 kgHorváth
48
66 kgTörök
56
68 kgČubrić
59
80 kgHonkanen
60
78 kgHautalahti
64
75 kgDigerud
70
75 kg
1
69 kgMelikhov
2
76 kgGazda
3
69 kgPetrov
5
76 kgMoiceanu
6
72 kgKapitonov
8
73 kgJuszko
12
78 kgKudra
13
68 kgZieliński
14
80 kgFornalczyk
15
77 kgRuiner
24
64 kgBracke
26
79 kgMegyerdi
27
65 kgKotev
33
82 kgHorváth
48
66 kgTörök
56
68 kgČubrić
59
80 kgHonkanen
60
78 kgHautalahti
64
75 kgDigerud
70
75 kg
Weight (KG) →
Result →
82
64
1
70
# | Rider | Weight (KG) |
---|---|---|
1 | SAIDKHUZHIN Gainan | 69 |
2 | MELIKHOV Yury | 76 |
3 | GAZDA Stanislaw | 69 |
5 | PETROV Aleksei | 76 |
6 | MOICEANU Gabriel | 72 |
8 | KAPITONOV Viktor | 73 |
12 | JUSZKO Janos | 78 |
13 | KUDRA Jan | 68 |
14 | ZIELIŃSKI Rajmund | 80 |
15 | FORNALCZYK Bogusław | 77 |
24 | RUINER Arnold | 64 |
26 | BRACKE Ferdinand | 79 |
27 | MEGYERDI Antal | 65 |
33 | KOTEV Dimitar | 82 |
48 | HORVÁTH Ferenc | 66 |
56 | TÖRÖK Győző | 68 |
59 | ČUBRIĆ Radoš | 80 |
60 | HONKANEN Raimo | 78 |
64 | HAUTALAHTI Unto | 75 |
70 | DIGERUD Per | 75 |