Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.1 * weight - 4
This means that on average for every extra kilogram weight a rider loses 0.1 positions in the result.
Kapitonov
1
73 kgPetrov
1
76 kgMelikhov
1
76 kgSaidkhuzhin
1
69 kgGazda
2
69 kgZieliński
2
80 kgFornalczyk
2
77 kgKudra
2
68 kgEckstein
3
57 kgHorváth
4
66 kgJuszko
4
78 kgMegyerdi
4
65 kgTörök
4
68 kgMoiceanu
5
72 kgCosma
5
82 kgȘelaru
5
69 kgNijdam
6
75 kgČubrić
10
80 kgLevačić
10
77 kg
1
73 kgPetrov
1
76 kgMelikhov
1
76 kgSaidkhuzhin
1
69 kgGazda
2
69 kgZieliński
2
80 kgFornalczyk
2
77 kgKudra
2
68 kgEckstein
3
57 kgHorváth
4
66 kgJuszko
4
78 kgMegyerdi
4
65 kgTörök
4
68 kgMoiceanu
5
72 kgCosma
5
82 kgȘelaru
5
69 kgNijdam
6
75 kgČubrić
10
80 kgLevačić
10
77 kg
Weight (KG) →
Result →
82
57
1
10
# | Rider | Weight (KG) |
---|---|---|
1 | KAPITONOV Viktor | 73 |
1 | PETROV Aleksei | 76 |
1 | MELIKHOV Yury | 76 |
1 | SAIDKHUZHIN Gainan | 69 |
2 | GAZDA Stanislaw | 69 |
2 | ZIELIŃSKI Rajmund | 80 |
2 | FORNALCZYK Bogusław | 77 |
2 | KUDRA Jan | 68 |
3 | ECKSTEIN Bernhard | 57 |
4 | HORVÁTH Ferenc | 66 |
4 | JUSZKO Janos | 78 |
4 | MEGYERDI Antal | 65 |
4 | TÖRÖK Győző | 68 |
5 | MOICEANU Gabriel | 72 |
5 | COSMA Ion | 82 |
5 | ȘELARU Aurel | 69 |
6 | NIJDAM Henk | 75 |
10 | ČUBRIĆ Radoš | 80 |
10 | LEVAČIĆ Ivan | 77 |