Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.3 * weight + 11
This means that on average for every extra kilogram weight a rider loses 0.3 positions in the result.
Kudra
3
68 kgSaidkhuzhin
4
69 kgSwerts
7
75 kgRitter
8
74 kgZieliński
9
80 kgMagiera
12
78 kgKegel
16
72 kgHoffmann
17
65 kgGazda
18
69 kgAl Dahab
24
64 kgHorváth
30
66 kgMahó
31
70 kgČubrić
35
80 kgTakács
43
65 kgMelikhov
45
76 kgSmolík
49
73 kgGleerup Hansen
52
75 kgMoiceanu
56
72 kgSkibby
59
69 kgErkhemjamts
61
64 kgWackström
65
76 kgMartínez
66
73 kgSuikkanen
67
79 kg
3
68 kgSaidkhuzhin
4
69 kgSwerts
7
75 kgRitter
8
74 kgZieliński
9
80 kgMagiera
12
78 kgKegel
16
72 kgHoffmann
17
65 kgGazda
18
69 kgAl Dahab
24
64 kgHorváth
30
66 kgMahó
31
70 kgČubrić
35
80 kgTakács
43
65 kgMelikhov
45
76 kgSmolík
49
73 kgGleerup Hansen
52
75 kgMoiceanu
56
72 kgSkibby
59
69 kgErkhemjamts
61
64 kgWackström
65
76 kgMartínez
66
73 kgSuikkanen
67
79 kg
Weight (KG) →
Result →
80
64
3
67
# | Rider | Weight (KG) |
---|---|---|
3 | KUDRA Jan | 68 |
4 | SAIDKHUZHIN Gainan | 69 |
7 | SWERTS Roger | 75 |
8 | RITTER Ole | 74 |
9 | ZIELIŃSKI Rajmund | 80 |
12 | MAGIERA Jan | 78 |
16 | KEGEL Marian | 72 |
17 | HOFFMANN Günter | 65 |
18 | GAZDA Stanislaw | 69 |
24 | AL DAHAB Tarek Abou | 64 |
30 | HORVÁTH Ferenc | 66 |
31 | MAHÓ László | 70 |
35 | ČUBRIĆ Radoš | 80 |
43 | TAKÁCS András | 65 |
45 | MELIKHOV Yury | 76 |
49 | SMOLÍK Jan | 73 |
52 | GLEERUP HANSEN Flemming | 75 |
56 | MOICEANU Gabriel | 72 |
59 | SKIBBY Willy | 69 |
61 | ERKHEMJAMTS Luvsangiin | 64 |
65 | WACKSTRÖM Ole | 76 |
66 | MARTÍNEZ Sergio | 73 |
67 | SUIKKANEN Raimo | 79 |