Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.8 * weight - 30
This means that on average for every extra kilogram weight a rider loses 0.8 positions in the result.
Moravec
1
74 kgNelyubin
2
71 kgKühn
3
64 kgGorelov
4
70 kgGonschorek
11
70 kgOberfranz
12
76 kgWesemann
14
70 kgHáva
15
62 kgSzurkowski
17
77 kgTakács
19
65 kgMenéndez
23
70 kgArencibia
30
82 kgGera
34
76 kgPeterman
35
70 kgMartinov
39
79 kgRodríguez
47
60 kgMilsett
48
70 kgVázquez
54
82 kgVuorenhela
56
75 kg
1
74 kgNelyubin
2
71 kgKühn
3
64 kgGorelov
4
70 kgGonschorek
11
70 kgOberfranz
12
76 kgWesemann
14
70 kgHáva
15
62 kgSzurkowski
17
77 kgTakács
19
65 kgMenéndez
23
70 kgArencibia
30
82 kgGera
34
76 kgPeterman
35
70 kgMartinov
39
79 kgRodríguez
47
60 kgMilsett
48
70 kgVázquez
54
82 kgVuorenhela
56
75 kg
Weight (KG) →
Result →
82
60
1
56
# | Rider | Weight (KG) |
---|---|---|
1 | MORAVEC Vlastimil | 74 |
2 | NELYUBIN Vladislav | 71 |
3 | KÜHN Wolfram | 64 |
4 | GORELOV Nikolay | 70 |
11 | GONSCHOREK Dieter | 70 |
12 | OBERFRANZ Karl-Heinz | 76 |
14 | WESEMANN Wolfgang | 70 |
15 | HÁVA Jiří | 62 |
17 | SZURKOWSKI Ryszard | 77 |
19 | TAKÁCS András | 65 |
23 | MENÉNDEZ Roberto | 70 |
30 | ARENCIBIA Gregorio Aldo | 82 |
34 | GERA Imre | 76 |
35 | PETERMAN József | 70 |
39 | MARTINOV Martin | 79 |
47 | RODRÍGUEZ Pedro | 60 |
48 | MILSETT Tore | 70 |
54 | VÁZQUEZ Raúl Marcelo | 82 |
56 | VUORENHELA Tapani Aimo | 75 |