Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 3.7 * weight + 438
This means that on average for every extra kilogram weight a rider loses 3.7 positions in the result.
Strazzer
2
68 kgSvorada
5
76 kgArtunghi
7
71 kgDietz
8
69 kgMickiewicz
10
74 kgDe Clercq
990
66 kgCapelle
990
73 kgPadrnos
990
81 kgDvorščík
990
68 kgLeysen
990
75 kgSypytkowski
990
76 kgRich
990
82 kgTonkov
990
70 kgHeppner
990
69 kgPiątek
990
71 kgBrożyna
990
65 kgLipták
990
68 kg
2
68 kgSvorada
5
76 kgArtunghi
7
71 kgDietz
8
69 kgMickiewicz
10
74 kgDe Clercq
990
66 kgCapelle
990
73 kgPadrnos
990
81 kgDvorščík
990
68 kgLeysen
990
75 kgSypytkowski
990
76 kgRich
990
82 kgTonkov
990
70 kgHeppner
990
69 kgPiątek
990
71 kgBrożyna
990
65 kgLipták
990
68 kg
Weight (KG) →
Result →
82
65
2
990
# | Rider | Weight (KG) |
---|---|---|
2 | STRAZZER Massimo | 68 |
5 | SVORADA Ján | 76 |
7 | ARTUNGHI Marco | 71 |
8 | DIETZ Bert | 69 |
10 | MICKIEWICZ Jacek | 74 |
990 | DE CLERCQ Mario | 66 |
990 | CAPELLE Christophe | 73 |
990 | PADRNOS Pavel | 81 |
990 | DVORŠČÍK Milan | 68 |
990 | LEYSEN Bart | 75 |
990 | SYPYTKOWSKI Andrzej | 76 |
990 | RICH Michael | 82 |
990 | TONKOV Pavel | 70 |
990 | HEPPNER Jens | 69 |
990 | PIĄTEK Zbigniew | 71 |
990 | BROŻYNA Tomasz | 65 |
990 | LIPTÁK Miroslav | 68 |