Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -1.8 * weight + 774
This means that on average for every extra kilogram weight a rider loses -1.8 positions in the result.
Tonkov
1
70 kgSvorada
2
76 kgLipták
3
68 kgDietz
4
69 kgPadrnos
5
81 kgDvorščík
9
68 kgDe Clercq
990
66 kgCapelle
990
73 kgStrazzer
990
68 kgArtunghi
990
71 kgMickiewicz
990
74 kgLeysen
990
75 kgSypytkowski
990
76 kgRich
990
82 kgHeppner
990
69 kgPiątek
990
71 kgBrożyna
990
65 kg
1
70 kgSvorada
2
76 kgLipták
3
68 kgDietz
4
69 kgPadrnos
5
81 kgDvorščík
9
68 kgDe Clercq
990
66 kgCapelle
990
73 kgStrazzer
990
68 kgArtunghi
990
71 kgMickiewicz
990
74 kgLeysen
990
75 kgSypytkowski
990
76 kgRich
990
82 kgHeppner
990
69 kgPiątek
990
71 kgBrożyna
990
65 kg
Weight (KG) →
Result →
82
65
1
990
# | Rider | Weight (KG) |
---|---|---|
1 | TONKOV Pavel | 70 |
2 | SVORADA Ján | 76 |
3 | LIPTÁK Miroslav | 68 |
4 | DIETZ Bert | 69 |
5 | PADRNOS Pavel | 81 |
9 | DVORŠČÍK Milan | 68 |
990 | DE CLERCQ Mario | 66 |
990 | CAPELLE Christophe | 73 |
990 | STRAZZER Massimo | 68 |
990 | ARTUNGHI Marco | 71 |
990 | MICKIEWICZ Jacek | 74 |
990 | LEYSEN Bart | 75 |
990 | SYPYTKOWSKI Andrzej | 76 |
990 | RICH Michael | 82 |
990 | HEPPNER Jens | 69 |
990 | PIĄTEK Zbigniew | 71 |
990 | BROŻYNA Tomasz | 65 |