Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -21.4 * weight + 2358
This means that on average for every extra kilogram weight a rider loses -21.4 positions in the result.
Sypytkowski
4
76 kgRich
8
82 kgDe Clercq
10
66 kgSvorada
990
76 kgCapelle
990
73 kgStrazzer
990
68 kgArtunghi
990
71 kgDietz
990
69 kgMickiewicz
990
74 kgPadrnos
990
81 kgDvorščík
990
68 kgLeysen
990
75 kgTonkov
990
70 kgHeppner
990
69 kgPiątek
990
71 kgBrożyna
990
65 kgLipták
990
68 kg
4
76 kgRich
8
82 kgDe Clercq
10
66 kgSvorada
990
76 kgCapelle
990
73 kgStrazzer
990
68 kgArtunghi
990
71 kgDietz
990
69 kgMickiewicz
990
74 kgPadrnos
990
81 kgDvorščík
990
68 kgLeysen
990
75 kgTonkov
990
70 kgHeppner
990
69 kgPiątek
990
71 kgBrożyna
990
65 kgLipták
990
68 kg
Weight (KG) →
Result →
82
65
4
990
# | Rider | Weight (KG) |
---|---|---|
4 | SYPYTKOWSKI Andrzej | 76 |
8 | RICH Michael | 82 |
10 | DE CLERCQ Mario | 66 |
990 | SVORADA Ján | 76 |
990 | CAPELLE Christophe | 73 |
990 | STRAZZER Massimo | 68 |
990 | ARTUNGHI Marco | 71 |
990 | DIETZ Bert | 69 |
990 | MICKIEWICZ Jacek | 74 |
990 | PADRNOS Pavel | 81 |
990 | DVORŠČÍK Milan | 68 |
990 | LEYSEN Bart | 75 |
990 | TONKOV Pavel | 70 |
990 | HEPPNER Jens | 69 |
990 | PIĄTEK Zbigniew | 71 |
990 | BROŻYNA Tomasz | 65 |
990 | LIPTÁK Miroslav | 68 |