Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -52.7 * weight + 4547
This means that on average for every extra kilogram weight a rider loses -52.7 positions in the result.
Svorada
1
76 kgPadrnos
2
81 kgRich
3
82 kgDietz
5
69 kgDe Clercq
990
66 kgCapelle
990
73 kgStrazzer
990
68 kgArtunghi
990
71 kgMickiewicz
990
74 kgDvorščík
990
68 kgLeysen
990
75 kgSypytkowski
990
76 kgTonkov
990
70 kgHeppner
990
69 kgPiątek
990
71 kgBrożyna
990
65 kgLipták
990
68 kg
1
76 kgPadrnos
2
81 kgRich
3
82 kgDietz
5
69 kgDe Clercq
990
66 kgCapelle
990
73 kgStrazzer
990
68 kgArtunghi
990
71 kgMickiewicz
990
74 kgDvorščík
990
68 kgLeysen
990
75 kgSypytkowski
990
76 kgTonkov
990
70 kgHeppner
990
69 kgPiątek
990
71 kgBrożyna
990
65 kgLipták
990
68 kg
Weight (KG) →
Result →
82
65
1
990
# | Rider | Weight (KG) |
---|---|---|
1 | SVORADA Ján | 76 |
2 | PADRNOS Pavel | 81 |
3 | RICH Michael | 82 |
5 | DIETZ Bert | 69 |
990 | DE CLERCQ Mario | 66 |
990 | CAPELLE Christophe | 73 |
990 | STRAZZER Massimo | 68 |
990 | ARTUNGHI Marco | 71 |
990 | MICKIEWICZ Jacek | 74 |
990 | DVORŠČÍK Milan | 68 |
990 | LEYSEN Bart | 75 |
990 | SYPYTKOWSKI Andrzej | 76 |
990 | TONKOV Pavel | 70 |
990 | HEPPNER Jens | 69 |
990 | PIĄTEK Zbigniew | 71 |
990 | BROŻYNA Tomasz | 65 |
990 | LIPTÁK Miroslav | 68 |