Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.6 * weight + 61
This means that on average for every extra kilogram weight a rider loses -0.6 positions in the result.
Voigt
1
76 kgGrabsch
2
81 kgPadrnos
7
81 kgOriol
9
71 kgMeyer
10
67 kgBaranowski
11
68 kgUllrich
12
73 kgBrożyna
13
65 kgSivakov
16
72 kgHonchar
18
67 kgLipták
22
68 kgPugaci
24
67 kgIvanov
25
71 kgHuser
26
65 kgBonciucov
34
66 kgRich
40
82 kgGates
42
71 kgMcEwen
43
67 kg
1
76 kgGrabsch
2
81 kgPadrnos
7
81 kgOriol
9
71 kgMeyer
10
67 kgBaranowski
11
68 kgUllrich
12
73 kgBrożyna
13
65 kgSivakov
16
72 kgHonchar
18
67 kgLipták
22
68 kgPugaci
24
67 kgIvanov
25
71 kgHuser
26
65 kgBonciucov
34
66 kgRich
40
82 kgGates
42
71 kgMcEwen
43
67 kg
Weight (KG) →
Result →
82
65
1
43
# | Rider | Weight (KG) |
---|---|---|
1 | VOIGT Jens | 76 |
2 | GRABSCH Ralf | 81 |
7 | PADRNOS Pavel | 81 |
9 | ORIOL Vyaceslav | 71 |
10 | MEYER Christian | 67 |
11 | BARANOWSKI Dariusz | 68 |
12 | ULLRICH Jan | 73 |
13 | BROŻYNA Tomasz | 65 |
16 | SIVAKOV Alexei | 72 |
18 | HONCHAR Serhiy | 67 |
22 | LIPTÁK Miroslav | 68 |
24 | PUGACI Igor | 67 |
25 | IVANOV Ruslan | 71 |
26 | HUSER Rolf | 65 |
34 | BONCIUCOV Igor | 66 |
40 | RICH Michael | 82 |
42 | GATES Nick | 71 |
43 | MCEWEN Robbie | 67 |