Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.4 * weight + 45
This means that on average for every extra kilogram weight a rider loses -0.4 positions in the result.
Nardello
1
74 kgGontchenkov
4
74 kgCasarotto
7
74 kgCenghialta
8
73 kgDjavanian
11
64 kgBettini
13
58 kgArtunghi
14
71 kgSivakov
19
72 kgSimoni
20
59 kgFagnini
22
70 kgUgrumov
25
58 kgForconi
28
71 kgFontanelli
30
68 kgFerrari
31
74 kgBartoli
32
65 kgTosatto
34
74 kgFrigo
36
66 kg
1
74 kgGontchenkov
4
74 kgCasarotto
7
74 kgCenghialta
8
73 kgDjavanian
11
64 kgBettini
13
58 kgArtunghi
14
71 kgSivakov
19
72 kgSimoni
20
59 kgFagnini
22
70 kgUgrumov
25
58 kgForconi
28
71 kgFontanelli
30
68 kgFerrari
31
74 kgBartoli
32
65 kgTosatto
34
74 kgFrigo
36
66 kg
Weight (KG) →
Result →
74
58
1
36
# | Rider | Weight (KG) |
---|---|---|
1 | NARDELLO Daniele | 74 |
4 | GONTCHENKOV Alexander | 74 |
7 | CASAROTTO Davide | 74 |
8 | CENGHIALTA Bruno | 73 |
11 | DJAVANIAN Viatcheslav | 64 |
13 | BETTINI Paolo | 58 |
14 | ARTUNGHI Marco | 71 |
19 | SIVAKOV Alexei | 72 |
20 | SIMONI Gilberto | 59 |
22 | FAGNINI Gian Matteo | 70 |
25 | UGRUMOV Piotr | 58 |
28 | FORCONI Riccardo | 71 |
30 | FONTANELLI Fabiano | 68 |
31 | FERRARI Diego | 74 |
32 | BARTOLI Michele | 65 |
34 | TOSATTO Matteo | 74 |
36 | FRIGO Dario | 66 |