Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
This means that on average for every extra kilogram weight a rider loses 0.2 positions in the result.
Commesso
1
66 kgBennati
2
71 kgMarzoli
3
61 kgTosatto
4
74 kgGiunti
6
62 kgSacchi
7
68 kgPaolini
9
66 kgEvans
14
64 kgCelestino
15
67 kgBertagnolli
17
63 kgUshakov
18
73 kgMatveyev
21
78 kgWegmann
22
60 kgO'Neill
24
72 kgZanotti
27
70 kgVansevenant
29
65 kgScarselli
30
67 kg
1
66 kgBennati
2
71 kgMarzoli
3
61 kgTosatto
4
74 kgGiunti
6
62 kgSacchi
7
68 kgPaolini
9
66 kgEvans
14
64 kgCelestino
15
67 kgBertagnolli
17
63 kgUshakov
18
73 kgMatveyev
21
78 kgWegmann
22
60 kgO'Neill
24
72 kgZanotti
27
70 kgVansevenant
29
65 kgScarselli
30
67 kg
Weight (KG) →
Result →
78
60
1
30
# | Rider | Weight (KG) |
---|---|---|
1 | COMMESSO Salvatore | 66 |
2 | BENNATI Daniele | 71 |
3 | MARZOLI Ruggero | 61 |
4 | TOSATTO Matteo | 74 |
6 | GIUNTI Massimo | 62 |
7 | SACCHI Fabio | 68 |
9 | PAOLINI Luca | 66 |
14 | EVANS Cadel | 64 |
15 | CELESTINO Mirko | 67 |
17 | BERTAGNOLLI Leonardo | 63 |
18 | USHAKOV Serhiy | 73 |
21 | MATVEYEV Sergiy | 78 |
22 | WEGMANN Fabian | 60 |
24 | O'NEILL Nathan | 72 |
27 | ZANOTTI Marco | 70 |
29 | VANSEVENANT Wim | 65 |
30 | SCARSELLI Leonardo | 67 |