Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.3 * weight - 6
This means that on average for every extra kilogram weight a rider loses 0.3 positions in the result.
Grassin
1
62 kgDhers
2
72 kgDetreille
3
70 kgBidot
5
78 kgGatier
7
64 kgAnseeuw
8
76 kgCoomans
9
62 kgDegy
11
74 kgGerbaud
12
76 kgNempon
13
58 kgChassot
15
72 kgLacolle
16
82 kgMoulet
17
79 kgSamyn
19
71 kgLoew
21
76 kgBilling
23
75 kgLafosse
24
70 kgLouis
28
65 kgHennuyer
29
76 kg
1
62 kgDhers
2
72 kgDetreille
3
70 kgBidot
5
78 kgGatier
7
64 kgAnseeuw
8
76 kgCoomans
9
62 kgDegy
11
74 kgGerbaud
12
76 kgNempon
13
58 kgChassot
15
72 kgLacolle
16
82 kgMoulet
17
79 kgSamyn
19
71 kgLoew
21
76 kgBilling
23
75 kgLafosse
24
70 kgLouis
28
65 kgHennuyer
29
76 kg
Weight (KG) →
Result →
82
58
1
29
# | Rider | Weight (KG) |
---|---|---|
1 | GRASSIN Robert | 62 |
2 | DHERS Eugène | 72 |
3 | DETREILLE Georges | 70 |
5 | BIDOT Marcel | 78 |
7 | GATIER Georges | 64 |
8 | ANSEEUW Urbain | 76 |
9 | COOMANS Jacques | 62 |
11 | DEGY Gaston | 74 |
12 | GERBAUD Robert | 76 |
13 | NEMPON Jules | 58 |
15 | CHASSOT René | 72 |
16 | LACOLLE Roger | 82 |
17 | MOULET Fernand | 79 |
19 | SAMYN Julien | 71 |
21 | LOEW Charles | 76 |
23 | BILLING René | 75 |
24 | LAFOSSE Victor | 70 |
28 | LOUIS Leonce | 65 |
29 | HENNUYER Charles | 76 |