Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.1 * weight + 20
This means that on average for every extra kilogram weight a rider loses -0.1 positions in the result.
Frantz
1
78 kgCuvelier
2
65 kgBeeckman
3
61 kgMoulet
4
79 kgBachellerie
5
76 kgBidot
8
78 kgDewaele
9
69 kgGérard
10
61 kgVerschueren
11
91 kgFlahaut
12
64 kgCanova
13
71 kgGerbaud
15
76 kgHuot
16
66 kgMagne
19
74 kgGobillot
21
58 kgVille
22
68 kgArchelais
23
64 kgNeuhard
26
67 kgJordens
27
72 kgPetre
29
82 kg
1
78 kgCuvelier
2
65 kgBeeckman
3
61 kgMoulet
4
79 kgBachellerie
5
76 kgBidot
8
78 kgDewaele
9
69 kgGérard
10
61 kgVerschueren
11
91 kgFlahaut
12
64 kgCanova
13
71 kgGerbaud
15
76 kgHuot
16
66 kgMagne
19
74 kgGobillot
21
58 kgVille
22
68 kgArchelais
23
64 kgNeuhard
26
67 kgJordens
27
72 kgPetre
29
82 kg
Weight (KG) →
Result →
91
58
1
29
# | Rider | Weight (KG) |
---|---|---|
1 | FRANTZ Nicolas | 78 |
2 | CUVELIER Georges | 65 |
3 | BEECKMAN Théophile | 61 |
4 | MOULET Fernand | 79 |
5 | BACHELLERIE Pierre | 76 |
8 | BIDOT Marcel | 78 |
9 | DEWAELE Maurice | 69 |
10 | GÉRARD René | 61 |
11 | VERSCHUEREN Denis | 91 |
12 | FLAHAUT Albert | 64 |
13 | CANOVA Giovanni | 71 |
15 | GERBAUD Robert | 76 |
16 | HUOT Marcel | 66 |
19 | MAGNE Antonin | 74 |
21 | GOBILLOT Marcel | 58 |
22 | VILLE Maurice | 68 |
23 | ARCHELAIS Jean | 64 |
26 | NEUHARD Ernest | 67 |
27 | JORDENS Albert | 72 |
29 | PETRE Edouard | 82 |