Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.1 * weight + 10
This means that on average for every extra kilogram weight a rider loses 0.1 positions in the result.
Cuvelier
1
65 kgFrantz
3
78 kgVerschueren
4
91 kgDewaele
6
69 kgBidot
7
78 kgBachellerie
9
76 kgGérard
10
61 kgMagne
11
74 kgGerbaud
12
76 kgFlahaut
13
64 kgDevos
16
72 kgNeuhard
17
67 kgBeeckman
18
61 kgCanova
19
71 kgGobillot
20
58 kgMoulet
27
79 kgPetre
28
82 kgLacolle
30
82 kg
1
65 kgFrantz
3
78 kgVerschueren
4
91 kgDewaele
6
69 kgBidot
7
78 kgBachellerie
9
76 kgGérard
10
61 kgMagne
11
74 kgGerbaud
12
76 kgFlahaut
13
64 kgDevos
16
72 kgNeuhard
17
67 kgBeeckman
18
61 kgCanova
19
71 kgGobillot
20
58 kgMoulet
27
79 kgPetre
28
82 kgLacolle
30
82 kg
Weight (KG) →
Result →
91
58
1
30
# | Rider | Weight (KG) |
---|---|---|
1 | CUVELIER Georges | 65 |
3 | FRANTZ Nicolas | 78 |
4 | VERSCHUEREN Denis | 91 |
6 | DEWAELE Maurice | 69 |
7 | BIDOT Marcel | 78 |
9 | BACHELLERIE Pierre | 76 |
10 | GÉRARD René | 61 |
11 | MAGNE Antonin | 74 |
12 | GERBAUD Robert | 76 |
13 | FLAHAUT Albert | 64 |
16 | DEVOS Léon | 72 |
17 | NEUHARD Ernest | 67 |
18 | BEECKMAN Théophile | 61 |
19 | CANOVA Giovanni | 71 |
20 | GOBILLOT Marcel | 58 |
27 | MOULET Fernand | 79 |
28 | PETRE Edouard | 82 |
30 | LACOLLE Roger | 82 |